K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2018

Chọn A.

Tam thức f(x) =  x 2  + x - 12 có a = 1 > 0 và có hai nghiệm x 1  = -4; x 2  = 3

(f(x) trái dấu với hệ số a).

Suy ra  x 2  + x - 12 < 0 ⇔ -4 < x < 3

Vậy tập nghiệm của bất phương trình là S = (-4;3).

28 tháng 2 2017

Đáp án: C

3 tháng 3 2022

B nhá bạn 

Chọn D

14 tháng 11 2019

Khi x = 4 căn thức triệt tiêu nên x = 4 không là nghiệm của bất phương trình, do đó B, C, D đều sai.

Đáp án: A

NV
21 tháng 3 2022

\(\dfrac{x^2+x+3}{x^2-4}\ge1\Leftrightarrow\dfrac{x^2+x+3}{x^2-4}-1\ge0\)

\(\Leftrightarrow\dfrac{x+7}{x^2-4}\ge0\Rightarrow\left[{}\begin{matrix}-7\le x< -2\\x>2\end{matrix}\right.\)

\(\Rightarrow S\cap\left(-2;2\right)=\varnothing\)

2: \(\text{Δ}=1^2-4\cdot\left(-1\right)\cdot\left(-m\right)=1-4m\)

Để bất phương trình vô nghiệm thì \(\left\{{}\begin{matrix}1-4m< 0\\-1< 0\end{matrix}\right.\Leftrightarrow m>\dfrac{1}{4}\)

16 tháng 3 2022

bạn có thể giúp mk giải theo kiểu tự luận đc ko ạ

 

NV
5 tháng 5 2021

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\3\left(x^2-4x\right)-\left(x-2\right)>12\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\3\left(x^2-4x\right)-\left(2-x\right)>12\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\3x^2-13x-10>0\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\3x^2-11x-14>0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>5\\x< -1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=-1\\b=5\end{matrix}\right.\)

30 tháng 4 2021

3x2 - 12x - |x - 2| > 12

⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\3x^2-12x-\left(x-2\right)>12\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\3x^2-12x-\left(2-x\right)>12\end{matrix}\right.\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\3x^2-12x-x+2>12\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\3x^2-12x+x-2>12\end{matrix}\right.\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}x>5\\x< -1\end{matrix}\right.\)

Vậy tập nghiệm là \(S=\left(-\infty;-1\right)\cup\left(5;+\infty\right)\)