Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=> |-2x + 3 |.|5 + 4x| = 19
vì |-2x + 3 |.|5 + 4x| lớn hơn hoặc bằng 0
=> x,0 <=> x<15
mà x>19 ko hợp lý
=> các số nguyên x thỏa mãn là 0
=> |-2x + 3 |.|5 + 4x| = 19
vì |-2x + 3 |.|5 + 4x| lớn hơn hoặc bằng 0
=> x,0 <=> x<15
mà x>19 (vô lý)
=> các số nguyên x thỏa mãn là 0
Vi |x^2-5| va |5-x^2| luon lon hon hoac bang 0
\(\Leftrightarrow\)|x^2-5| = 0 va |5-x^2| = 0
\(\Leftrightarrow\)x^2- 5 = 0 va 5- x^2 = 0
\(\Leftrightarrow\)x^2 = 5
\(\Leftrightarrow\)x = 5 ; x = -5
mk làm câu c cho nó dễ
c)1/1.2+1/2.3+...+1/x.(x+1)=2009/2010
=1-1/2+1/2-1/3+...+1/x-1/x+1=2009/2010
=1-1/x+1=2009/2010
=1/x+1=1-2009/2010
=1/x+1=1/2010
=) x+1=2010
x =2010-1
x =2009
a) \(\left(x+1\right)-\frac{x+1}{3}=\frac{5\left(x+1\right)-1}{6}\)
\(\Leftrightarrow6\left(x+1\right)-2\left(x+1\right)=5\left(x+1\right)-1\)
\(\Leftrightarrow6x+6-2x-2=5x+5-1\)
\(\Leftrightarrow6x-2x-5x=5-1-6+2\)
\(\Leftrightarrow-x=0\)
\(\Leftrightarrow x=0\)
b) \(\left(1-x\right)^2+\left(x+2\right)^2=2x\left(x-3\right)-7\)
\(\Leftrightarrow1-2x+x^2+x^2+4x+4=2x^2-6x-7\)
\(\Leftrightarrow2x^2+2x+5=2x^2-6x-7\)
\(\Leftrightarrow2x+6x=-7-5\)
\(\Leftrightarrow8x=-12\)
\(\Leftrightarrow x=-\frac{3}{2}\)
c) \(2+\frac{x-2}{2}-\frac{2x-4}{3}-\frac{5}{6}\left(2-x\right)=0\)
\(\Leftrightarrow2+\frac{x}{2}-1-\frac{2}{3}x+\frac{4}{3}-\frac{5}{3}+\frac{5}{6}x=0\)
\(\Leftrightarrow\frac{x}{2}-\frac{2}{3}x+\frac{5}{6}x=-2+1-\frac{4}{3}+\frac{5}{3}\)
\(\Leftrightarrow\frac{2}{3}x=-\frac{2}{3}\)
\(\Leftrightarrow x=-1\)
\(\left(2x-3\right)\left(6-2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\6-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1,5\\x=3\end{matrix}\right.\)
*\(\frac{1}{4}+\frac{1}{3}:\left(2x-1\right)=-5\)
\(\Leftrightarrow\frac{1}{3}\cdot\frac{1}{2x-1}=-5-\frac{1}{4}\)
\(\Leftrightarrow\frac{1}{3\left(2x-1\right)}=\frac{-21}{4}\)
\(\Leftrightarrow-63\left(2x-1\right)=4\)
\(\Leftrightarrow2x-1=-\frac{4}{63}\)
\(\Leftrightarrow2x=\frac{59}{63}\)
\(x=\frac{59}{126}\)