Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
so do la:2;14
tk cho mk nhe
kb voi mk roi mk tk cho 3 lan luon
3n+10 chia hết cho n+1
=>3(n+1)+7 chia hết cho n+1
=>7 chia hết cho n+1
=>n+1 thuộc Ư(7)={1;7}
+)n+1=1=>n=0
+)n+1=7=>n=6
vậy {} cần tìm là {0;6}
Ta có:\(\frac{3n+10}{n+1}=\frac{3n+3+7}{n+1}=\frac{3\left(n+1\right)+7}{n+1}=3+\frac{7}{n+1}\)
Để 3n + 10 : n + 1 là số nguyên dương khi 7 chia hết cho n+1
Hay \(n+1\inƯ\left(7\right)\)
Vậy Ư(7) là:[1,-1,7,-7]
Do đó ta có bảng sau:
n+1 | -7 | -1 | 1 | 7 |
n | -8 | -2 | 0 | 6 |
ta có :n-1:n-1
3.(n-1):n-1
3n-3:n-1
mà 3n+10:n-1
=) 3n-3+13:n-1
13:n-1
n-1 thuoc Ư(13)={1;13}
n={2;14}
neu dung n
(3n+10) chia het (n-1)
(3n-3+13) chia het (n-1)
3(n-1) +13 chia het n-1
13 chia hết n-1
n-1 thuộc Ư(13)={1;13}
n thuộc {2.14}
3n + 10 ⋮ n - 1 <=> 3 ( n - 1 ) + 13 ⋮ n - 1
=> 13 ⋮ n - 1 hay n - 1 thuộc ước của 13
ước của 13 là - 13 ; - 1 ; 1 ; 13
=> n - 1 = { - 13 ; - 1 ; 1 ; 3 }
=> n = { - 12 ; 0 ; 2 ; 4 }
Ta có:
(3n + 10)⋮(n - 1)
⇒ [(3n - 3) + 13]⋮(n - 1)
⇒ [3(n - 1) + 13]⋮(n - 1)
Vì 3(n - 1)⋮(n - 1) nên để [3(n - 1) + 13]⋮(n - 1) thì 13⋮(n - 1)
⇒ n - 1 ∈ Ư(13)
⇒ n - 1 ∈ {1; -1; 13; -13}
⇒ n ∈ {2; 0; 14; -12}
Mà n là số nguyên dương
⇒ n ∈ {2; 14}
Vậy tập hợp A các số nguyên dương n thỏa mãn (3n + 10)⋮(n - 1) là:
A = {2; 14}
\(\frac{3n+10}{n-1}=\frac{3\left(n-1\right)+13}{n-1}=\frac{3\left(n-1\right)}{n-1}+\frac{13}{n-1}=3+\frac{13}{n-1}\in Z\)
\(\Rightarrow13⋮n-1\)
\(\Rightarrow n-1\inƯ\left(13\right)=\left\{1;-1;13;-13\right\}\)
\(\Rightarrow n\in\left\{2;0;14\right\}\) (n nguyên dương)