K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 7 2021

Tiếp tục 1 câu hỏi sai, có thể cả 4 mệnh đề đều đúng, không mệnh đề nào sai cả

Ví dụ:

\(f\left(x\right)=x^2-x+1\) thỏa mãn \(f\left(x\right)>0\) ; \(\forall x\)

Nhưng:

\(a+b+c=1>0\) (mệnh đề A đúng)

\(5a-b+2c=8>0\) (mệnh đề B đúng)

\(10c-2b+2c=14>0\) (mệnh đề C đúng)

\(11a-3b+5c=19>0\) (mệnh đề D cũng đúng luôn)

9 tháng 11 2018

Dùng delta đi

9 tháng 11 2018

giải giúp mk đi Mashiro Shiina

NV
14 tháng 2 2020

\(\Delta=b^2-4ac\le0\Rightarrow b^2\le4ac\Rightarrow\frac{a}{b}.\frac{c}{b}\ge\frac{1}{4}\)

Đặt \(\left(\frac{a}{b};\frac{c}{b}\right)=\left(x;y\right)\Rightarrow xy\ge\frac{1}{4}\)

\(F=4x+y\ge4\sqrt{xy}\ge4\sqrt{\frac{1}{4}}=2\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=\frac{1}{4}\\y=1\end{matrix}\right.\) hay \(b=c=4a\)

13 tháng 11 2017

Ai jup m câu này với

AH
Akai Haruma
Giáo viên
16 tháng 2 2021

Lời giải:Vì $f(x)\geq 0$ nên $\Delta=b^2-4ac\leq 0$

$\Leftrightarrow 4ac\geq b^2$

Áp dụng BĐT AM-GM:

$Q=\frac{4a+c}{b}\geq \frac{4\sqrt{ac}}{b}\geq \frac{4\sqrt{b^2}}{b}=\frac{4b}{b}=4$

Vậy $Q_{\min}=4$

AH
Akai Haruma
Giáo viên
31 tháng 12 2016

BĐT 1 sai ngay với \(a=\sqrt{0,1},b=\sqrt{0,2},c=\sqrt{2,7}\)

BĐT 2 tương đương với đi chứng minh \(a^4b^4+b^4c^4+c^4a^4\geq 3a^2b^2c^2\)

Áp dụng BĐT AM-GM: \(a^4b^4+b^4c^4\geq 2a^2b^4c^2\)

Tương tự \(b^4c^4+c^4a^4\geq 2b^2c^4a^2,a^4b^4+c^4a^4\geq 2a^4b^2c^2\)

Cộng theo vế và rút gọn:

\(\Rightarrow a^4b^4+b^4c^4+c^4a^4\geq a^2b^2c^2(a^2+b^2+c^2)=3a^2b^2c^2\)

Do đó ta có đpcm. Dấu $=$ xảy ra khi $a=b=c=1$

1 tháng 1 2017

thì ra cái đầu sai nghĩ mãi ko ra, đại ca thông minh thật :v