Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác MNK có góc MKN = 90 o
=> MN2= MK2+ NK2 ( theo đ/l py ta go )
=> 152=122 + NK2
=> NK2= 225-144
=> NK2= 81
=> NK= 9 ( cm )
Ta có NK+PK= PN
=> PN= 9+ 16
=> PN= 25 ( cm)
Xét tam giác MNP có góc PMN = 90o
=> PN2= MN2+ MP2 ( THeo đ/l pytago)
=> MP2= PN2-MN2
=> MP2=625 - 225
=> MP2= 400
=> MP=20 (cm)
a: \(\widehat{P}=180^0-50^0-64^0=66^0>\widehat{N}\)
nên MN>MP
b: Xét ΔMNP có MN>MP
mà HN là hình chiếu của MN trên NP
và HP là hình chiếu của MP trên NP
nên HN>HP
a: NP=10cm
C=MN+MP+NP=24(cm)
b: Xét ΔMNK vuông tại M và ΔENK vuông tại E có
NK chung
\(\widehat{MNK}=\widehat{ENK}\)
Do đó: ΔMNK=ΔENK
c: Ta có: MK=EK
mà EK<KP
nên MK<KP
a: Xét ΔMNI vuông tại M và ΔKNI vuông tại K có
NI chung
\(\widehat{MNI}=\widehat{KNI}\)
Do đó: ΔMNI=ΔKNI
b: Ta có: ΔMNI=ΔKNI
nên NM=NK
Xét ΔNMK có NM=NK
nên ΔNMK cân tại N
mà \(\widehat{MNK}=60^0\)
nên ΔNMK đều
c: Ta có: ΔMNI=ΔKNI
nên MI=IK
mà IK<IP
nên MI<IP
d: Xét ΔMNP vuông tại M có
\(NP=\dfrac{MN}{\sin30^0}\)
\(=3:\dfrac{1}{2}=6\left(cm\right)\)
Áp dụng định lí Pytago vào ΔMNP vuông tại M, ta được:
\(MN^2+MP^2=NP^2\)
\(\Leftrightarrow MP=3\sqrt{3}\left(cm\right)\)
a, Theo định lí Pytago tam giác MNP vuông tại M
\(MP=\sqrt{NP^2-MN^2}=8cm\)
b, Ta có MK < MP ( cạnh huyền > cạnh góc vuông tam giác MKP vuông tại K)