K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2022

5 cm

IK2=HI2 +HK2=32+42 =25    (định lý pitago)   ⇒IK=5cm 

19 tháng 3 2022

Theo định lí Pytago tam giác HIK vuông tại H

\(HK=\sqrt{IK^2-HI^2}=4cm\)

chọn A

19 tháng 2 2022

Áp dụng định lý Pitago vào tam giác HIK vuông tại H

Ta có \(HI^2+HK^2=IK^2=>3^2+4^2=IK^2\\ =>9+16=IK^2=>IK^2=25=>IK=\sqrt{25}=5\)

=> Chọn C

Chọn C

a) Áp dụng định lí Pytago vào ΔQMP vuông tại M, ta được:

\(PQ^2=MP^2+MQ^2\)

\(\Leftrightarrow PQ^2=3^2+4^2=25\)

hay PQ=5(cm)

Vậy: PQ=5cm

a: HK=12cm

 b: Xét ΔIHM vuông tại H và ΔIEM vuông tại E có

IM chung

\(\widehat{HIM}=\widehat{EIM}\)

Do đó:ΔIHM=ΔIEM

c: Ta có: ΔIHM=ΔIEM

nên IH=IE; MH=ME

=>IM là đường trung trực của EH

14 tháng 5 2022

a, Xét Δ IHK vuông tại H, có :

\(IK^2=IH^2+HK^2\) (định lí Py - ta - go)

=> \(13^2=5^2+HK^2\)

=> \(HK^2=144\)

=> HK = 12 (cm)

b, Xét Δ HIM và Δ EIM, có :

\(\widehat{HIM}=\widehat{EIM}\) (IM là tia phân giác \(\widehat{HIE}\))

IM là cạnh chung

\(\widehat{IHM}=\widehat{IEM}=90^o\)

=> Δ HIM = Δ EIM (g.c.g)

c, Ta có : Δ HIM = Δ EIM (cmt)

=> HI = EI

=> Δ HIE cân tại I

Ta có :

Δ HIE cân tại I

IM là tia phân giác \(\widehat{HIE}\)

=> IM ⊥ EH

21 tháng 2 2020

áp dụng đ/l pitago ta đc:

IK^2 = HI^2 + HK^2

=>29^2 = 20^2 + HK^2

=>HK^2 = 29^2 - 20^2

=>HK^2 = 441

=> Hk = 21