Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔDEF vuông tại D có
\(DE=DF\cdot\cos60^0\)
\(=15\cdot\dfrac{1}{2}=7.5\left(cm\right)\)
Áp dụng định lí Pytago vào ΔDFE vuông tại D, ta được:
\(EF^2=DE^2+DF^2\)
\(\Leftrightarrow DF^2=15^2-7.5^2=\dfrac{675}{4}\)
hay \(DF=\dfrac{15\sqrt{3}}{2}\left(cm\right)\)
a) Ta có: ΔDEF vuông tại D(gt)
nên \(\widehat{F}+\widehat{E}=90^0\)
hay \(\widehat{F}=30^0\)
Xét ΔDEF vuông tại D có
\(DF=DE\cdot\tan60^0\)
\(=12\sqrt{3}\left(cm\right)\)
Xét ΔDEF vuông tại D có
\(\sin\widehat{DFE}=\dfrac{DE}{FE}\)
\(\Leftrightarrow FE=12:\dfrac{1}{2}=24\left(cm\right)\)
b) Áp dụng định lí Pytago vào ΔDEF vuông tại D có
\(FE^2=DE^2+DF^2\)
\(\Leftrightarrow FE^2=8^2+15^2=289\)
hay FE=17(cm)
Xét ΔDEF vuông tại D có
\(\sin\widehat{DFE}=\dfrac{DE}{EF}=\dfrac{15}{17}\)
\(\Leftrightarrow\widehat{DFE}\simeq62^0\)
\(\Leftrightarrow\widehat{DEF}=28^0\)
\(\widehat{F}=90^0-\widehat{E}=30^0\)
\(DE=\tan F\cdot DF=\tan30^0\cdot10=\dfrac{\sqrt{3}}{3}\cdot10=\dfrac{10\sqrt{3}}{3}\left(cm\right)\\ EF=\dfrac{DE}{\sin F}=\dfrac{\dfrac{10\sqrt{3}}{3}}{\sin30^0}=\dfrac{20\sqrt{3}}{3}\left(cm\right)\)
\(a,\) Áp dụng Pytago \(EF=\sqrt{DE^2+DF^2}=25\left(cm\right)\)
Áp dụng HTL:
\(\left\{{}\begin{matrix}DE^2=EH\cdot EF\\DF^2=FH\cdot EF\\DH^2=FH\cdot EH\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}EH=\dfrac{DE^2}{EF}=9\left(cm\right)\\FH=\dfrac{DF^2}{EF}=16\left(cm\right)\\DH=\sqrt{9\cdot16}=12\left(cm\right)\end{matrix}\right.\)
\(b,\sin\widehat{E}=\cos\widehat{F}=\dfrac{DF}{EF}=\dfrac{4}{5}\approx\left\{{}\begin{matrix}\sin53^0\\\cos37^0\end{matrix}\right.\\ \Rightarrow\widehat{E}\approx53^0;\widehat{F}\approx37^0\)
DE=cos E .EF
DE=0,5.15
DE=7,5cm
DF=sinE.EF
DF=\(\dfrac{\sqrt{3}}{2}.15=\dfrac{15\sqrt{3}}{2}\)
Ta có: \(\cos60^o=\dfrac{DE}{E\text{F}}=\dfrac{\text{1}}{2}\Rightarrow DE=\dfrac{E\text{F}}{2}=\dfrac{\text{1}5}{2}=7,5cm\)
Áp dụng định lí Py-ta-go vào ΔDEF vuông tại D
⇒ EF2=DE2+DF2 ⇒ DF2=EF2-DE2=152-7,52=168,75
⇒ \(DF=\dfrac{15\sqrt{3}}{2}\) cm