Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔBAC vuông tại A có
\(AB^2+AC^2=BC^2\)
hay AC=16(cm)
Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//AC và \(MN=\dfrac{AC}{2}=\dfrac{16}{2}=8\left(cm\right)\)
Xét tứ giác AMNC có MN//AC
nên AMNC là hình thang
mà \(\widehat{A}=90^0\)
nên AMNC là hình thang vuông
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình của ΔABC
SUy ra: MN//AC
hay AMNC là hình thang vuông
Cho ∆JVC vuông tại J. Gọi M, N lần lượt là trung điểm của JV, VC.
a) Chứng minh: JMNC là hình thang vuông. b) Gọi I là trung điểm của JC. Chứng minh: JMNI là hình chữ nhật c) Tìm điều kiện của ∆JVC để tứ giác JMNI là hình vuônggiải giúp mình nhea: Xét ΔABC có
N là trung điểm của AC
K là trung điểm của BC
Do đó: NK là đường trung bình của ΔABC
Suy ra: NK//AB
Xét tứ giác ANKB có KN//AB
nên ANKB là hình thang
mà \(\widehat{NAB}=90^0\)
nên ANKB là hình thang vuông
1: Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay AC=16(cm)
Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//AC và \(MN=\dfrac{AC}{2}\)
2: Xét tứ giác AMNC có MN//AC
nên AMNC là hình thang
mà \(\widehat{A}=90^0\)
nên AMNC là hình thang vuông
a: Xét ΔBAC co BM/BA=BN/BC
nên MN//AC và MN=AC/2
=>AMNC là hình thang
mà góc MAC=90 độ
nen AMNC là hình thang vuông
b: Xét tứ giác ANBH có
M là trung điểm chung của AB và NH
NA=NB
nên ANBH là hình thoi
a) Xét tam giác ABC có:
M,N là trung điểm BC,AB
=> MN là đường trung bình
=> MN//AC
=> ANMC là hthang
Mà \(\widehat{NAC}=90^0\)(Tam giác ABC vuông tại A)
=> ANMC là hthang vuông
b) Xét tam giác ABC vuông tại A:
\(BC^2=AB^2+AC^2\left(Pytago\right)\)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)
Xét tam giác ABC có:
AM là đường trung tuyến ứng với cạnh huyền
\(\Rightarrow AM=\dfrac{1}{2}BC=\dfrac{1}{2}.10=5\left(cm\right)\)
a: Xét ΔABC có
M là trung điểm của BC
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//AB
Xét tứ giác ANMB có MN//AB
nên ANMB là hình thang
mà \(\widehat{NAB}=90^0\)
nên ANMB là hình thang vuông
b: Xét tứ giác AMCD có
N là trung điểm của AC
N là trung điểm của MD
Do đó; AMCD là hình bình hành
mà MA=MC
nên AMCD là hình thoi
a: Xét tứ giác AEMC có ME//AC
nên AEMC là hình thang
mà \(\widehat{CAE}=90^0\)
nên AEMC là hình thang vuông
b: Xét tứ giác AEMF có
\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)
Do đó: AEMF là hình chữ nhật