K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔBAC vuông tại A có 

\(AB^2+AC^2=BC^2\)

hay AC=16(cm)

Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của BC

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//AC và \(MN=\dfrac{AC}{2}=\dfrac{16}{2}=8\left(cm\right)\)

Xét tứ giác AMNC có MN//AC

nên AMNC là hình thang

mà \(\widehat{A}=90^0\)

nên AMNC là hình thang vuông

22 tháng 12 2021

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của BC

Do đó: MN là đường trung bình của ΔABC

SUy ra: MN//AC

hay AMNC là hình thang vuông

28 tháng 12 2021

 Cho ∆JVC vuông tại J. Gọi M, N lần lượt là trung điểm của JV, VC. 

a) Chứng minh: JMNC là hình thang vuông. b) Gọi I là trung điểm của JC. Chứng minh: JMNI là hình chữ nhật c) Tìm điều kiện của ∆JVC để tứ giác JMNI là hình vuônggiải giúp mình nhe
22 tháng 10 2021

a: Xét ΔABC có

N là trung điểm của AC
K là trung điểm của BC

Do đó: NK là đường trung bình của ΔABC

Suy ra: NK//AB

Xét tứ giác ANKB có KN//AB

nên ANKB là hình thang

mà \(\widehat{NAB}=90^0\)

nên ANKB là hình thang vuông

1: Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay AC=16(cm)

Xét ΔABC có

M là trung điểm của AB

N là trung điểm của BC

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//AC và \(MN=\dfrac{AC}{2}\)

2: Xét tứ giác AMNC có MN//AC

nên AMNC là hình thang

mà \(\widehat{A}=90^0\)

nên AMNC là hình thang vuông

30 tháng 9 2021

Dạ còn phần số 2 nữa ấy ạ :33

 

17 tháng 12 2022

a: Xét ΔBAC co BM/BA=BN/BC

nên MN//AC và MN=AC/2

=>AMNC là hình thang

mà góc MAC=90 độ

nen AMNC là hình thang vuông

b: Xét tứ giác ANBH có

M là trung điểm chung của AB và NH

NA=NB

nên ANBH là hình thoi

25 tháng 10 2021

a) Xét tam giác ABC có:

M,N là trung điểm BC,AB

=> MN là đường trung bình

=> MN//AC

=> ANMC là hthang

Mà \(\widehat{NAC}=90^0\)(Tam giác ABC vuông tại A)

=> ANMC là hthang vuông

b) Xét tam giác ABC vuông tại A:

\(BC^2=AB^2+AC^2\left(Pytago\right)\)

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)

Xét tam giác ABC có: 

AM là đường trung tuyến ứng với cạnh huyền

\(\Rightarrow AM=\dfrac{1}{2}BC=\dfrac{1}{2}.10=5\left(cm\right)\)

a: Xét ΔABC có 

M là trung điểm của BC

N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//AB

Xét tứ giác ANMB có MN//AB

nên ANMB là hình thang

mà \(\widehat{NAB}=90^0\)

nên ANMB là hình thang vuông

b: Xét tứ giác AMCD có

N là trung điểm của AC
N là trung điểm của MD

Do đó; AMCD là hình bình hành

mà MA=MC

nên AMCD là hình thoi

a: Xét tứ giác AEMC có ME//AC

nên AEMC là hình thang

mà \(\widehat{CAE}=90^0\)

nên AEMC là hình thang vuông

b: Xét tứ giác AEMF có 

\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)

Do đó: AEMF là hình chữ nhật