Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC=10cm
C=AB+BC+AC=6+8+10=24(cm)
b: Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔABD=ΔHBD
c: Ta có: ΔABD=ΔHBD
nên DA=DH
mà DH<DC
nên DA<DC
a) Áp dụng định lý Py - ta - go vào \(\Delta ABC\)vuông tại \(A\)
\(BC^2=AB^2+AC^2\)
\(BC^2=3^2+3^2\Rightarrow BC=3\sqrt{2}cm=18\left(cm\right)\)
b) Áp dụng định lý Py - ta - go vào \(\Delta ABC\)vuông tại \(A\)ta có :
\(BC^2+AB^2+AC^2\)
\(BC^2=4^2+6^2\)
\(BC=28\left(cm\right)\)
c) Áp dụng định lý Py - ta - go vào \(\Delta ABC\)vuông tại \(A\), ta có :
\(BC^2=AB^2+AC^2=BC^2=5^2+3^2\Rightarrow BC=25+9=34\left(cm\right)\)
d) Áp dụng định lý Py - ta - go vào \(\Delta ABC\)vuông tại \(A\)ta có :
\(BC^2=AB^2+AC^2=BC^2=5^2+5^2=5\sqrt{2}=50\left(cm\right)\)
(Tự vẽ hình)
a) Áp dụng định lý Pytago ta có:
\(BC^2=AB^2+AC^2=6^2+8^2=100\Rightarrow BC=10\left(cm\right)\)
b) Xét \(\Delta ABD\) và \(\Delta HBD\) có:
\(\widehat{BAD}=\widehat{BHD}=90^0\)
\(BD\) chung
\(\widehat{ABD}=\widehat{HBD}\) (tính chất phân giác)
\(\Rightarrow\Delta ABD=\Delta HBD\) (ch - gn)
c) Ta có \(\Delta ABD=\Delta HBD\Rightarrow AD=HD\)
Mà \(HD< DC\) (do \(\Delta HDC\) vuông tại \(H\))
\(\Rightarrow DA< DC\)
a, Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AC^2+AB^2}=10cm\)
b, Xét tam giác BAD và tam giác BHD có
BD _ chung ; ^ABD = ^HBD ; ^BAD = ^BHD = 900
Vậy tam giác BAD = tam giác BHD ( ch-gn)
A
A