K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2022

a: 

Xét ΔAHD có AH=HD và góc AHD=90 độ

nên ΔAHD vuông cân tại H

=>góc HAD=góc HDA=45 độ

=>góc ADE=45 độ

Xét tứ giác ABDE có góc EAB+góc EDB=180 độ

nên ABDE là tứ giác nội tiếp

=>góc ABE=góc ADE=45 độ

Xét ΔEAB vuông tại A có góc ABE=45 độ

nên ΔEAB vuông cân tại A

=>AE=AB

b: Xét tứ giác AMHB có góc AMB=góc AHB=90 độ

nên AMHB là tứ giác nội tiếp

=>góc AHM=góc ABM=45 độ

20 tháng 11 2022

a: 

Xét ΔAHD có AH=HD và góc AHD=90 độ

nên ΔAHD vuông cân tại H

=>góc HAD=góc HDA=45 độ

=>góc ADE=45 độ

Xét tứ giác ABDE có góc EAB+góc EDB=180 độ

nên ABDE là tứ giác nội tiếp

=>góc ABE=góc ADE=45 độ

Xét ΔEAB vuông tại A có góc ABE=45 độ

nên ΔEAB vuông cân tại A

=>AE=AB

b: Xét tứ giác AMHB có góc AMB=góc AHB=90 độ

nên AMHB là tứ giác nội tiếp

=>góc AHM=góc ABM=45 độ

. Xét hai tg BEC và ACD có ^C chung, tg AHD vuông cân tại H (HD = HA) nên ^ADH = 45 độ suy ra 
^ADC = 135 độ . Từ E vẽ thêm đường vuông góc AH tại K. Có tg AHB = tgEKA (vì AH = HD = KE, ^AEK = ^ACB = ^BAH) nên AB = AEVaayj tg BAE vuông cân tại A nên ^AEB = 45 độ suy ra ^BEC = 135 độ. Vậy ^BEC = ^ADC = 135 độ và ^C chung nên tg BEC và tam giác ADC đồng dạng. 
Suy ra BE = AB.căn2 = m.căn2 
b. Có AM = BE/2 (trung tuyến ứng cạnh huyền của tg vuôngBAE, DM = BE/2 trung tuyến ứng cạnh huyền của tg vuông BDE) vậy AM = MDHM chung AH = HD nên tgAHM = tgDHM(ccc) nên ^AHM = 
^MHD = 45 độ suy ra ^BHM = 90 độ + 45 độ = 135 độ = ^BEC . Hay tg BHM và tgBEC có ^BHM = ^BEC, ^MBH chung nên hai tam giác BHM và BEC đồng dạng (gg) . 
^AHM = 45 độ

a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có

góc ACB chung

Do dó ΔCDE đồng dạng với ΔCAB

=>CD/CA=CE/CB

=>CD/CE=CA/CB

=>ΔCDA đồng dạng với ΔCEB

=>EB/DA=BC/AC

mà BC/AC=AC/CH

nên EB/DA=AC/CH=BA/HA

=>BE/AD=BA/HA

=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)

\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)

b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2

nên góc AEB=45 độ

=>ΔABE vuông cân tại A

=>AM vuông góc với BE

BM*BE=BA^2

BH*BC=BA^2

Do đó: BM*BE=BH/BC

=>BM/BC=BH/BE

=>ΔBMH đồng dạng với ΔBCE

5 tháng 11 2018

A B C H D E M K

a) Qua A kẻ đường thẳng vuông góc với tia DE tại K.

Xét tứ giác AHDK: ^AHD = ^HDK = ^AKD = 900; AH=DH => AHDK là hình vuông

=> ^HAK = 900 và AH=AK

Ta có: ^BAH + ^HAC = ^EAK + ^HAC = 900 => ^BAH = ^EAK

Xét \(\Delta\)AHB và \(\Delta\)AKE có: ^AHB = ^AKE (=900); AH=AK; ^BAH = ^EAK

=> \(\Delta\)AHB = \(\Delta\)AKE (g.c.g) => AB=AE (2 cạnh tương ứng) (đpcm).

b) Xét \(\Delta\)ABE vuông tại A có trung tuyến AM => AM=BE/2. Tương tự: DM=BE/2

=> AM=DM => \(\Delta\)MAH = \(\Delta\)MDH (c.c.c) => ^AHM = ^DHM = ^AHD/2 = 450.

ĐS...

13 tháng 10 2015

a) Kẻ EK vuông góc AH ( K thuộc AH )

Xét tứ giác KEDH, có:

             EKH = 900

             KHD = 900

             HDE = 900

=> KEDH là hcn ( tứ giác có 3 góc vuông )

=> KE = HD ( cạnh đối )

Xét 2 tam giác vuông BAH và AEK, có:

AH = EK (cùng = HD)

BAH  = AEK (cùng phụ HAE)

=> tam giác BAH = tam giác AEK (gn-cgv)

=> AB = AE (ctu)

b) Nối AM, MD 

Tam giác AEB vuông tại A, có:

               AM làm trung tuyến (M là tđ của BE)

               BE cạnh huyền

=> AM = 1/2 BE

Tam giác BED vuông tại D có

                DM là trung tuyến (M là tđ của BE)

                 BE là cạnh huyền

=> DM = 1/2 BE

=> AM = DM (cùng =1/2 BE)

Tam giác AHM và tam giác DHM có

                  HA = HD (GT)

                  AM = DM (cmt)

                  HM chung   

=> Tam giác AHM = tam giác DHM (c-c-c)

=> AHM = DHM

=> HM là tia phân giác AHD

 

27 tháng 11 2016

a) Kẻ EK vuông góc AH ( K thuộc AH )

Xét tứ giác KEDH, có:

             EKH = 900

             KHD = 900

             HDE = 900

=> KEDH là hcn ( tứ giác có 3 góc vuông )

=> KE = HD ( cạnh đối )

Xét 2 tam giác vuông BAH và AEK, có:

AH = EK (cùng = HD)

BAH  = AEK (cùng phụ HAE)

=> tam giác BAH = tam giác AEK (gn-cgv)

=> AB = AE (ctu)

b) Nối AM, MD 

Tam giác AEB vuông tại A, có:

               AM làm trung tuyến (M là tđ của BE)

               BE cạnh huyền

=> AM = 1/2 BE

Tam giác BED vuông tại D có

                DM là trung tuyến (M là tđ của BE)

                 BE là cạnh huyền

=> DM = 1/2 BE

=> AM = DM (cùng =1/2 BE)

Tam giác AHM và tam giác DHM có

                  HA = HD (GT)

                  AM = DM (cmt)

                  HM chung   

=> Tam giác AHM = tam giác DHM (c-c-c)

=> AHM = DHM

=> HM là tia phân giác AHD