Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Xét \(\Delta ABC\) có: \(\left\{{}\begin{matrix}CF=BF\\BD=AD\end{matrix}\right.\)\(\Rightarrow\)DF là đường trung bình của \(\Delta ABC\)
\(\Rightarrow\)DF//AC hay DF//EC(1)
Lại có, xét \(\Delta ABC\): \(\left\{{}\begin{matrix}CE=AE\\BD=AD\end{matrix}\right.\)\(\Rightarrow\) ED là đường trung bình của \(\Delta ABC\)
\(\Rightarrow\) ED//BC hay ED//CF(2)
Từ (1) và (2) suy ra tứ giác FDEC là hình bình hành
b. Ta có: \(\left\{{}\begin{matrix}FD//AC\\AC\perp AB\end{matrix}\right.\) \(\Rightarrow FD\perp AB\Rightarrow\widehat{FDA}=90^o\)
Tương tự xét \(\Delta ABC\) có: \(\left\{{}\begin{matrix}CE=AE\\CF=BF\end{matrix}\right.\)\(\Rightarrow\)EF là đường trung bình của \(\Delta ABC\)
\(\Rightarrow\) EF//AB
Có: \(\left\{{}\begin{matrix}EF//AB\\AC\perp AB\end{matrix}\right.\)\(\Rightarrow EF\perp AC\Rightarrow\widehat{FEA}=90^o\)
Xét tứ giác EFDA có: \(\widehat{FEA}=\widehat{EFD}=\widehat{EAD}=90^o\)
\(\Rightarrow\) Tứ giác EFDA là hình chữ nhật \(\Rightarrow\) AF=DE
c. Xét \(\Delta AKC\) vuông tại K có KE là đường trung tuyến ứng với cạnh huyền
\(\Rightarrow EK=\dfrac{AC}{2}=CE=EA\)
Mà EA=DF (EDFA là hình chữ nhật)
\(\Rightarrow EK=DF\)
Xét tứ giác KDEF có: \(\left\{{}\begin{matrix}DK//EF\\DF=EK\end{matrix}\right.\)\(\Rightarrow\) Tứ giác KDEF là hình thang cân
a: Xét ΔABC có
D là tđiểm của AB
E là tđiểm của AC
Do đó: DE là đường trung bình
=>DE//FC và DE=FC
hay DECF là hình bình hành
a) Xét tứ giác ADME có:
∠(DAE) = ∠(ADM) = ∠(AEM) = 90o
⇒ Tứ giác ADME là hình chữ nhật (có ba góc vuông).
b) Ta có ME // AB ( cùng vuông góc AC)
M là trung điểm của BC (gt)
⇒ E là trung điểm của AC.
Ta có E là trung điểm của AC (cmt)
Chứng minh tương tự ta có D là trung điểm của AB
Do đó DE là đường trung bình của ΔABC
⇒ DE // BC và DE = BC/2 hay DE // MC và DE = MC
⇒ Tứ giác CMDE là hình bình hành.
c) Ta có DE // HM (cmt) ⇒ MHDE là hình thang (1)
Lại có HE = AC/2 (tính chất đường trung tuyến của tam giác vuông AHC)
DM = AC/2 (DM là đường trung bình của ΔABC) ⇒ HE = DM (2)
Từ (1) và (2) ⇒ MHDE là hình thang cân.
d) Gọi I là giao điểm của AH và DE. Xét ΔAHB có D là trung điểm của AB, DI // BH (cmt) ⇒ I là trung điểm của AH
Xét ΔDIH và ΔKIA có
IH = IA
∠DIH = ∠AIK (đối đỉnh),
∠H1 = ∠A1(so le trong)
ΔDIH = ΔKIA (g.c.g)
⇒ ID = IK
Tứ giác ADHK có ID = IK, IA = IH (cmt) ⇒ DHK là hình bình hành
⇒ HK // DA mà DA ⊥ AC ⇒ HK ⊥ AC
a) DE là đường trung bình của tam giác nên DE//BC và DE = 1/2 BC = BF
=> BDEF là hình bình hành vì có cặp cạnh đối DE và BF song song và bằng nhau.
b) Tam giác vuông HBA có HD là trung tuấn ứng với cạnh huyền => HD = 1/2 AB = BD
=> Tam giác DBH cân tại D.
c) Điểm G ở đâu hả bạn?
a. Xét ∆AHB vuông tại H có HM là đường
đường trung tuyến ( gt ) nên HM =
2AB( 1 )
Trong ∆ABC có N là trung điểm của AC ( gt ) O
và K là trung điểm của BC ( gt ) nên NK là
đường trung bình của ∆ABC → NK = 2AB( 2 ) B H K C
Từ ( 1 ) & ( 2 ) → HM = NK I
b) Trong ∆AHC vuông tại H có HN là đường trung tuyến ( gt ) nên HN = AC( 3 )
+ ∆ABC có M là trung điểm của AB ( gt ) và K là trung điểm của BC ( gt ) nên MK là
đường trung bình của ∆ABC → MK = AC ( 4)
Từ ( 3 ) & ( 4 ) → HN = 2MK (a)
+ ∆ABC có M là trung điểm của AB ( gt ) và N là trung điểm của AC ( gt ) nên MN là
đường trung bình của ∆ABC → MN // BC hay MN // KH
→ MNKH là hình thang (b). Từ (a) & (b) → MNKH là hình thang cân.
a: Xét ΔABC có
F là trung điểm của BC
D là trung điểm của AB
Do đó: FD là đường trung bình
=>FD//EC và FD=EC
hay FDEC là hình bình hành