Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: AB=6cm
Xét ΔABC có
BA là đường trung tuyến
BM=2/3BA
Do đó:M là trọng tâm của ΔBCD
b: Ta có: M là trọng tâm của ΔBCD
nên DM cắt BC tại trung điểm của BC
hay D,M,E thẳng hàng
a. Xét tam giác ABC \(⊥\) A
BC2=AB2+AC2 (Pytago)
102=82+AC2 => AC=10cm
b. Xét tam giác BCD có \(\frac{BM}{AB}=\frac{\frac{16}{3}}{8}=\frac{2}{3}\)
=> M là trực tâm cuả tam giác BCD
c. Ta có: DM là đttuyến của tam giác BCD mà DE cũng là đttuyến của tam giác BCD ( BE=CE)
=> DM trùng DE=> D, M, E thẳng hàng
CM: a) Xét t/giác ABM và t/giác ACN
có: AB = AC (gt)
\(\widehat{B}=\widehat{C}\) (vì t/giác ABC cân)
BM = CN (gt)
=> t/giác ABM = t/giác ACN (c.g.c)
b) Ta có: BM + MD = BD
CN + ND = CD
Mà BM = CN (gt); MD = ND (gt)
=> BD = CD
Xét t/giác ABD và t/giác ACD
có: AB = AC (gt)
\(\widehat{B}=\widehat{C}\) (vì t/giác ABC cân)
BD = CD (cmt)
=> t/giác ABD = t/giác ACD (c.g.c)
=> \(\widehat{BAD}=\widehat{CAD}\) (2 góc t/ứng)
=> AD là tia p/giác của \(\widehat{BAC}\)
c) Xét t/giác MEB = t/giác NFC
có: \(\widehat{BEM}=\widehat{CFN}=90^0\) (gt)
BM = CN (gt)
\(\widehat{B}=\widehat{C}\) (vì t/giác ABC cân)
=> t/giác MEB = t/giác NFC (ch - gn)
d) Ta có: AB = AE + EB
AC = AF + FA
mà AB = AC (gt); EB = FC (vì t/giác MEB = t/giác NFC)
=> AE = AF
=> t/giác AEF cân tại A
=> \(\widehat{AEF}=\widehat{AFE}=\frac{180^0-\widehat{A}}{2}\) (1)
T/giác ABC cân tại A
=> \(\widehat{B}=\widehat{C}=\frac{180^0-\widehat{A}}{2}\) (2)
Từ (1) và (2) => \(\widehat{AEF}=\widehat{B}\)
Mà 2 góc này ở vị trí đồng vị
=> EF // BC
e) Xét t/giác AEH và t/giác AFH
có: AE = AF (cmt)
\(\widehat{AEH}=\widehat{AFH}=90^0\) (gt)
AH : chung
=> t/giác AEH = t/giác AFH (ch - cgv)
=> \(\widehat{EAH}=\widehat{FAH}\) (2 góc t/ứng)
=> AH là tia p/giác của \(\widehat{A}\)
Mà AD cũng là tia p/giác của \(\widehat{A}\)
=> AH \(\equiv\) AD
=> A, D, H thẳng hàng
M: a) Xét t/giác ABM và t/giác ACN
có: AB = AC (gt)
(vì t/giác ABC cân)
BM = CN (gt)
=> t/giác ABM = t/giác ACN (c.g.c)
b) Ta có: BM + MD = BD
CN + ND = CD
Mà BM = CN (gt); MD = ND (gt)
=> BD = CD
Xét t/giác ABD và t/giác ACD
có: AB = AC (gt)
(vì t/giác ABC cân)
BD = CD (cmt)
=> t/giác ABD = t/giác ACD (c.g.c)
=> (2 góc t/ứng)
=> AD là tia p/giác của
c) Xét t/giác MEB = t/giác NFC
có: (gt)
BM = CN (gt)
(vì t/giác ABC cân)
=> t/giác MEB = t/giác NFC (ch - gn)
d) Ta có: AB = AE + EB
AC = AF + FA
mà AB = AC (gt); EB = FC (vì t/giác MEB = t/giác NFC)
=> AE = AF
=> t/giác AEF cân tại A
=> (1)
T/giác ABC cân tại A
=> (2)
Từ (1) và (2) =>
Mà 2 góc này ở vị trí đồng vị
=> EF // BC
e) Xét t/giác AEH và t/giác AFH
có: AE = AF (cmt)
(gt)
AH : chung
=> t/giác AEH = t/giác AFH (ch - cgv)
=> (2 góc t/ứng)
=> AH là tia p/giác của
Mà AD cũng là tia p/giác của
=> AH AD
=> A, D, H thẳng hàng
a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=10^2-6^2=64\)
hay AC=8cm
mà AD=AC
nên AD=8cm
b: Xét ΔBCD có
BA là đường trung tuyến ứng với cạnh CD
\(BM=\dfrac{2}{3}BA\)
Do đó: M là trọng tâm của ΔBCD
Suy ra: DM là đường trung tuyến ứng với cạnh BC
mà DE là đường trung tuyến ứng với cạnh BC
và DM,DE có điểm chung là D
nên D,M,E thẳng hàng
a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2\)
\(\Leftrightarrow AC^2=10^2-6^2=64\)
hay AC=8cm
mà AD=AC
nên AD=8cm
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AB^2=10^2-8^2=36\)
hay AB=6(cm)
Vậy: AB=6cm
b) Ta có: BM=4cm(gt)
BA=6cm(cmt)
Do đó: \(\dfrac{BM}{BA}=\dfrac{2}{3}\)
Xét ΔBCD có
BA là đường trung tuyến ứng với cạnh CD(A là trung điểm của CD)
M\(\in\)BA(gt)
\(\dfrac{BM}{BA}=\dfrac{2}{3}\)(cmt)
Do đó: M là trọng tâm của ΔBCD(Định lí)