K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AB^2=10^2-8^2=36\)

hay AB=6(cm)

Vậy: AB=6cm

b) Ta có: BM=4cm(gt)

BA=6cm(cmt)

Do đó: \(\dfrac{BM}{BA}=\dfrac{2}{3}\)

Xét ΔBCD có 

BA là đường trung tuyến ứng với cạnh CD(A là trung điểm của CD)

M\(\in\)BA(gt)

\(\dfrac{BM}{BA}=\dfrac{2}{3}\)(cmt)

Do đó: M là trọng tâm của ΔBCD(Định lí)

a: AB=6cm

Xét ΔABC có

BA là đường trung tuyến

BM=2/3BA

Do đó:M là trọng tâm của ΔBCD

b: Ta có: M là trọng tâm của ΔBCD

nên DM cắt BC tại trung điểm của BC

hay D,M,E thẳng hàng

9 tháng 5 2017

A B C D E M

a. Xét tam giác ABC \(⊥\) A

BC2=AB2+AC2 (Pytago)

102=82+AC2 => AC=10cm

b. Xét tam giác BCD có \(\frac{BM}{AB}=\frac{\frac{16}{3}}{8}=\frac{2}{3}\)

=> M là trực tâm cuả tam giác BCD

c. Ta có: DM là đttuyến của tam giác BCD mà DE cũng là đttuyến của tam giác BCD ( BE=CE)

=> DM trùng DE=> D, M, E thẳng hàng

10 tháng 7 2019

A B C D H E F M N

CM: a) Xét t/giác ABM và t/giác ACN

có: AB = AC (gt)

 \(\widehat{B}=\widehat{C}\) (vì t/giác ABC cân)

  BM = CN (gt)

=> t/giác ABM = t/giác ACN (c.g.c)

b) Ta có: BM + MD = BD

   CN + ND = CD

Mà BM = CN (gt); MD = ND (gt)

=> BD = CD

Xét t/giác ABD và t/giác ACD

có: AB = AC (gt)

  \(\widehat{B}=\widehat{C}\) (vì t/giác ABC cân)

 BD = CD (cmt)

=> t/giác ABD = t/giác ACD (c.g.c)

=> \(\widehat{BAD}=\widehat{CAD}\) (2 góc t/ứng)

=> AD là tia p/giác của \(\widehat{BAC}\)

c) Xét t/giác MEB = t/giác NFC

có: \(\widehat{BEM}=\widehat{CFN}=90^0\) (gt)

  BM = CN (gt)

    \(\widehat{B}=\widehat{C}\) (vì t/giác ABC cân)

=> t/giác MEB = t/giác NFC (ch - gn)

d) Ta có: AB = AE + EB

 AC = AF + FA

mà AB = AC (gt); EB = FC (vì t/giác MEB = t/giác NFC)

=> AE = AF 

=> t/giác AEF cân tại A

=> \(\widehat{AEF}=\widehat{AFE}=\frac{180^0-\widehat{A}}{2}\) (1)

T/giác ABC cân tại A
=> \(\widehat{B}=\widehat{C}=\frac{180^0-\widehat{A}}{2}\) (2)

Từ (1) và (2) => \(\widehat{AEF}=\widehat{B}\)

Mà 2 góc này ở vị trí đồng vị

=> EF // BC

e) Xét t/giác AEH và t/giác AFH

có: AE = AF (cmt)

 \(\widehat{AEH}=\widehat{AFH}=90^0\) (gt)

 AH : chung

=> t/giác AEH = t/giác AFH (ch - cgv)

=> \(\widehat{EAH}=\widehat{FAH}\) (2 góc t/ứng)

=> AH là tia p/giác của \(\widehat{A}\)

Mà AD cũng là tia p/giác của \(\widehat{A}\)

=> AH \(\equiv\) AD 

=> A, D, H thẳng hàng

5 tháng 5 2023

M: a) Xét t/giác ABM và t/giác ACN

có: AB = AC (gt)

 �^=�^ (vì t/giác ABC cân)

  BM = CN (gt)

=> t/giác ABM = t/giác ACN (c.g.c)

b) Ta có: BM + MD = BD

   CN + ND = CD

Mà BM = CN (gt); MD = ND (gt)

=> BD = CD

Xét t/giác ABD và t/giác ACD

có: AB = AC (gt)

  �^=�^ (vì t/giác ABC cân)

 BD = CD (cmt)

=> t/giác ABD = t/giác ACD (c.g.c)

=> ���^=���^ (2 góc t/ứng)

=> AD là tia p/giác của ���^

c) Xét t/giác MEB = t/giác NFC

có: ���^=���^=900 (gt)

  BM = CN (gt)

    �^=�^ (vì t/giác ABC cân)

=> t/giác MEB = t/giác NFC (ch - gn)

d) Ta có: AB = AE + EB

 AC = AF + FA

mà AB = AC (gt); EB = FC (vì t/giác MEB = t/giác NFC)

=> AE = AF 

=> t/giác AEF cân tại A

=> ���^=���^=1800−�^2 (1)

T/giác ABC cân tại A
=> �^=�^=1800−�^2 (2)

Từ (1) và (2) => ���^=�^

Mà 2 góc này ở vị trí đồng vị

=> EF // BC

e) Xét t/giác AEH và t/giác AFH

có: AE = AF (cmt)

 ���^=���^=900 (gt)

 AH : chung

=> t/giác AEH = t/giác AFH (ch - cgv)

=> ���^=���^ (2 góc t/ứng)

=> AH là tia p/giác của �^

Mà AD cũng là tia p/giác của �^

=> AH  AD 

=> A, D, H thẳng hàng

a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=10^2-6^2=64\)

hay AC=8cm

mà AD=AC

nên AD=8cm

b: Xét ΔBCD có 

BA là đường trung tuyến ứng với cạnh CD

\(BM=\dfrac{2}{3}BA\)

Do đó: M là trọng tâm của ΔBCD

Suy ra: DM là đường trung tuyến ứng với cạnh BC

mà DE là đường trung tuyến ứng với cạnh BC

và DM,DE có điểm chung là D

nên D,M,E thẳng hàng

a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2\)

\(\Leftrightarrow AC^2=10^2-6^2=64\)

hay AC=8cm

mà AD=AC

nên AD=8cm

16 tháng 6 2019