Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy ngay \(\Delta AIK\sim\Delta ACB\left(g-g\right)\)
Vậy tỉ số diện tích hai tam giác bằng bình phương tỉ số đồng dạng.
Do góc A = 60o nên \(\frac{AK}{AB}=cos60^o=\frac{1}{2}\)
Vậy thì \(\frac{S_{AIK}}{S_{ABC}}=\left(\frac{1}{2}\right)^2=\frac{1}{4}\Rightarrow S_{AIK}=160:4=40\left(cm^2\right)\)
AB=21/(3+4)x3=9 cm
AC=21-9=12cm
Tự kẻ hình bạn nhé =)))
Áp dụng định lí Pitago vào tam giác ABC , có
AB^2+AC^2=BC^2
=>thay số vào, tính được BC=15cm
Áp dụng hệ thức giữa cạnh và đường cao trong tg vuông, có:
AB^2=BHxBC
=>BH=81/15=5.4cm
=>CH=15-5.4=9.6cm
AH^2=BHxCH=5.4x9.6=51.84cm
Dễ thấy \(\widehat{BAH}=90^o-\widehat{B}=\widehat{C}\), mà \(\widehat{C}=30^o\) nên \(\widehat{BAH}=30^o\). Trong tam giác ABH vuông tại H, ta có \(\dfrac{BH}{AH}=\tan\widehat{BAH}=\tan30^o=\dfrac{\sqrt{3}}{3}\).
Trước hết ta tính \(\dfrac{S_{BHE}}{S_{ABH}}\). Để ý rằng \(\dfrac{S_{BHE}}{S_{ABH}}=\dfrac{EH}{AH}\). Mặt khác, \(\dfrac{EH}{AE}=\dfrac{BH}{AB}=\sin\widehat{BAH}=\sin30^o=\dfrac{1}{2}\) \(\Rightarrow\dfrac{EH}{AH}=\dfrac{1}{3}\) hay \(\dfrac{S_{BHE}}{S_{ABH}}=\dfrac{1}{3}\) (*). Lại thấy \(\dfrac{S_{ABH}}{S_{ABC}}=\dfrac{BH}{BC}\), mà \(\dfrac{BH}{AB}=\dfrac{1}{2}\Rightarrow BH=\dfrac{1}{2}AB\) và \(\dfrac{AB}{BC}=\sin\widehat{C}=\sin30^o=\dfrac{1}{2}\) \(\Rightarrow AB=\dfrac{1}{2}BC\). Từ đó suy ra \(BH=\dfrac{1}{4}BC\) hay \(\dfrac{BH}{BC}=\dfrac{1}{4}\) hay \(\dfrac{S_{ABH}}{S_{ABC}}=\dfrac{1}{4}\) (**)
Từ (*) và (**) \(\Rightarrow\dfrac{S_{BHE}}{S_{ABH}}.\dfrac{S_{ABH}}{S_{ABC}}=\dfrac{1}{3}.\dfrac{1}{4}\Rightarrow\dfrac{S_{BHE}}{S_{ABC}}=\dfrac{1}{12}\)