Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lý hàm cosin:
\(b=\sqrt{a^2+c^2-2ac.cosB}=7\)
Diện tích:
\(S_{ABC}=\dfrac{1}{2}ac.sinB=10\sqrt{3}\)
a: vecto AB=(1;1)
vecto AC=(2;6)
vecto BC=(1;5)
b: \(AB=\sqrt{1^2+1^2}=\sqrt{2}\)
\(AC=\sqrt{2^2+6^2}=2\sqrt{10}\)
\(BC=\sqrt{1^2+5^2}=\sqrt{26}\)
=>\(C=\sqrt{2}+2\sqrt{10}+\sqrt{26}\)
c: Tọa độ trung điểm của AB là:
x=(1+2)/2=1,5 và y=(-1+0)/2=-0,5
Tọa độ trung điểm của AC là;
x=(1+3)/2=2 và y=(-1+5)/2=4/2=2
Tọa độ trung điểm của BC là:
x=(2+3)/2=2,5 và y=(0+5)/2=2,5
d: ABCD là hình bình hành
=>vecto AB=vecto DC
=>3-x=1 và 5-y=1
=>x=2 và y=4
a, Theo định lí cosin:
\(BC^2=AB^2+AC^2-2AB.AC.cosA\)
\(\Leftrightarrow25=AB^2+36-2AB.6.cos30^o\)
\(\Leftrightarrow AB^2-AB.6\sqrt{3}+11=0\)
\(\Leftrightarrow AB=4\pm3\sqrt{3}\)
b, Theo định lí cosin:
\(AB^2=BC^2+AC^2-2BC.AC.cosC\)
\(\Leftrightarrow9=64+AC^2-16.AC.cos30^o\)
\(\Leftrightarrow AC^2-8\sqrt{3}AC+55=0\)
\(\Leftrightarrow AC^2-8\sqrt{3}AC+55=0\)
\(\Rightarrow\) vô nghiệm
\(\Rightarrow\) Không tồn tại tam giác ABC thỏa mãn
Đề có lỗi không
Ta có: \(\widehat{C}=180^0-\left(\widehat{A}+\widehat{B}\right)=180^0-\left(40^0+60^0\right)=80^0\)
Áp dụng định lý sin vào △ABC có:
\(\dfrac{BC}{\sin A}=\dfrac{AB}{\sin C}\)
\(\Rightarrow BC=\dfrac{AB.\sin A}{\sin C}=\dfrac{5.\sin40}{\sin60}\approx3,26\)
Chọn D.
Theo định lí hàm sin, ta có
Suy ra: