Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chu vi = 1 => a+b+c=1
viết lại đẳng thức: a/(a+b+c-a)+ b/(a+b+c-b) + c/(a+b+c-c) = 3/2
<=>a/b+c + b/c+a + c/a+b = 3/2
cộng 3 vào 2 vế rút ra được (a+b+c)(1/a+b + 1/b+c + 1/c+a ) = 9/2
<=>1/(a+b)+1/(b+c)+1/(c+a)=9/2(do a+b+c=1)
Sử dụng bđt Schwarz : 1/(a+b)+1/(b+c)+1/(c+a) >/ (1+1+1)2/2(a+b+c) = 9/2
đẳng thức xảy ra <=> a+b=b+c=c+a <=> a=b=c ta có đpcm
a=b=c=1 suy ra Tam giác ABC là tam giác đều vì có độ dài 3 canh = nhau .
Đặt b+c-a=x
c+a-b=y (x,y,z>0)
a+b-c=z
rồi rút a,b,c theo x,y,z.
AD Svacso
Đặt: x = b + c - a
y = c + a - b
z = a + b - c
=> x + y + z = a + b + c = 2
=> \(a=\frac{y+z}{2}\); \(b=\frac{x+z}{2}\); \(c=\frac{x+y}{2}\)
=> \(S=\frac{1}{2}\left(\frac{y+z}{x}+\frac{4z+4x}{y}+\frac{9x+9y}{z}\right)\)
\(=\frac{1}{2}\left(\frac{2-x}{x}+\frac{8-4y}{y}+\frac{18-9z}{z}\right)\)
\(=\frac{1}{x}+\frac{4}{y}+\frac{9}{z}-7\ge\frac{\left(1+2+3\right)^2}{x+y+z}-7=11\)
Dấu "=" xảy ra <=> \(\frac{1}{x}=\frac{2}{y}=\frac{3}{z}=\frac{1+2+3}{x+y+z}=3\)
=> x = 1/3; y = 2/3; z = 1
=> a = 5/6; b = 2/3; c = 1/2
Vậy min S = 11 đạt tại a = 5/6; b = 2/3 ; c = 1/2
Đặt \(\hept{\begin{cases}b+c=x\\a+c=y\\a+b=z\end{cases}}\)với x,y,z dương và \(a=\frac{y+z-x}{2};b=\frac{x+z-y}{2};c=\frac{x+y-z}{2}\)
Ta có \(\frac{a}{1-a}+\frac{b}{1-b}+\frac{c}{1-c}=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\)
\(=\frac{1}{2}\left(\frac{y}{x}+\frac{x}{y}\right)+\frac{1}{2}\left(\frac{z}{x}+\frac{x}{z}\right)+\frac{1}{2}\left(\frac{z}{y}+\frac{y}{z}\right)-\frac{3}{2}\ge1+1+1-\frac{3}{2}=\frac{3}{2}\)
Dấu "=" xảy ra khi và chỉ khi x=y=z
Với x=y=z thì a=b=c => tam giác ABC đều
Cách khác :
Chu vi tam giác bằng 1 suy ra \(a+b+c=1\Rightarrow\hept{\begin{cases}1-a=b+c\\1-b=c+a\\1-c=a+b\end{cases}}\)
Nên đẳng thức viết lại thành: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)\(=\frac{3}{2}\)
Ta sẽ chứng minh \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
Thật vậy, áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel:
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{a^2}{ab+ca}+\frac{b^2}{bc+ab}+\frac{c^2}{ac+bc}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)
\(\ge\frac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c\)
Vậy tam giác ABC đều.