Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ADH và tam giácAEK có:
AH=AK(gt)
góc ADH=góc AEK(gt)
AD =AE(gt)
vậy tam giác ADH=tam giác AEK(c-g-c)
=>AH=AK(2 cạnh tương ứng)
sai đừng giận mk nhé!!
Tự kẻ hình nha man,t nhác quá không muốn vẽ
Tam giác ADB và tam giác AEC bằng nhau vì \(AB=AC;\widehat{ABD}=\widehat{ACE};BD=AE\left(ezprove\right)\)
\(\Rightarrow\widehat{BAD}=\widehat{EAC}\Rightarrow\Delta AHD=\Delta AEK\left(ch-gn\right)\)
\(\Rightarrow AH=AK\left(đpcm\right)\)
a,Tam giác ABC cân tại A=> AB=AC
=> AD=BD=AE=EC
b,Xét tam giác ADG và tam giác BDK
GD=DK
ADG=BDK (đối đỉnh)
AD=DB (gt)
=> tam giác ADG=tam giác BDK
=>GAD=DBK
=> AG // BK(so le trong)
A,
xét \(\Delta ABD\)và \(\Delta ACD\)
CÓ \(\hept{\begin{cases}AB=AC\\chungAD\\BD=DC\end{cases}}\)
SUY RA \(\Delta ABD\)=\(\Delta ACD\) (C.C.C) (1)
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)
MÀ \(\widehat{BDA}\)+\(\widehat{CDA}\)=180
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)=90
B, (1) => BC=DC=1/2 BC=8
ÁP DỤNG ĐỊNH LÍ PITAGO TA CÓ
\(AB^2=AD^2+BD^2\)
=> AD^2=36
=>AD=6
hình bạn tự vẽ nhé
xét tam giác ADM và tam giác ADE có
AD = AE (GT)
AM là cạnh chung
DM = ME (gt)
Do đó tam giác ADM bằng tam giác ADE (c.c.c)
suy ra \(\widehat{BAM}=\widehat{CAM}\)2 GÓC TƯƠNG ỨNG
mà AN nằm giữa AB và AC
suy ra TIA AN LÀ TIA PHÂN GIÁC GÓC BAC
TƯƠNG TỰ TA CÓ TAM GIÁC ABN VÀ TAM GIÁC ACN BẰNG NHAU (C.C.C)
suy ra \(\widehat{BAN}=\widehat{CAN}\)2 GÓC TƯƠNG ỨNG
MÀ TIA AN NẰM GIỮA TIA AB VÀ TIA AC
SUY RA AN LÀ PHÂN GIÁC GÓC BAC (2)
từ (1) và (2) suy ra A,M,N thẳng hàng
Hình tự vẽ nha thanh niên :)
* Xét tam giác ADM và tam giác AEM có
AM là cạnh chung
AD=AE( theo GT )
DM=EM( M là trung điểm của DE)
=> Tam giác ADM = Tam giác AEM (c.c.c)
=> \(\widehat{DAM}\)=\(\widehat{EAM}\)(2 góc tương ứng)
=>AM là tia phân giác của \(\widehat{DAE}\)(1)
* Xét tam giác ABN và tam giác ACN có
AN là cạnh chung
AB=AC ( theo GT )
BN=CN ( N là trung điểm của BC )
=> Tam giác ABN = tam giác ACN (c.c.c)
=> \(\widehat{BAN}\)=\(\widehat{CAN}\)( 2 góc tương ứng )
=>AN là tia phân giác của \(\widehat{BAC}\)(2)
Từ (1) và (2) => A;M;N thằng hàng ( A;M;N thuộc tia phân giác của góc BAC)
XÉT TAM GIÁC ABC CÂN TẠI A CÓ
SUY RA GÓC B = GÓC C( ĐN TAM GIÁC CÂN)
XÉT TAM GIÁC ADE CÓ
AD=AE
SUY RA TAM GIÁC ADE CÂN TẠI A(ĐN TAM GIÁC CÂN)
SUY RA GÓC D = GÓC E( ĐN TAM GIÁC CÂN)
CÓ TAM GIÁC ADE CÂN TẠI A
TAM GIÁC ABC CÂN TẠI A
SUY RA GÓC ADE= GÓC AED = GÓC B = GÓC C
MÀ CÁC GÓC NÀY NẰM Ở VỊ TRÍ ĐỒNG VỊ
SUY RA DE // BC