Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác ABC cân tại A => AC = AB = 14 cm
Vì E thuộc đường trung trực của AB => EA = EB
=> EA + EC = EB + EC = AC = 14 cm
chu vi tam giác BEC = 24 cm => EB + EC + BC = 24 cm
=> BC = 24 - ( EB + EC )
=> 24 - 14 = 10 cm
Vậy đoạn thẳng BC dài 10 cm .
Bạn vẽ hình của ▲ABC ra, vẽ trung trực AB cắt AC tại E.
Nhận xét ▲ABE có: AE = BE (do E thuộc đường trung trực của AB)
Chu vi ▲BEC là:
P▲BEC = BE + EC + BC
mà AE = BE
---> P▲BEC = AE + EC + BC = AC+ BC
---> BC = P▲BEC - AC = 24 - 14 = 10cm
a) \(\Delta ABC\)cân tại A có \(\widehat{BAC}=40^o\)nên \(\widehat{ABC}=\widehat{ACB}=70^o\)
gọi giao điểm của AB với đường trung trực của nó là O
CM : \(\Delta AOD=\Delta BOD\left(c.g.c\right)\)\(\Rightarrow\)\(\Delta ADB\)cân tại D
\(\Rightarrow\widehat{ABD}=\widehat{BAD}=70^o\); \(AD=BD\)( 1 )
\(\Rightarrow\widehat{A_1}=\widehat{C_1}=180^o-70^o=110^o\)
Xét \(\Delta BEA\)và \(\Delta CDA\)có :
AE = CD ( gt ) ; \(\widehat{A_1}=\widehat{C_1}\)( cmt ) ; AB = AC ( gt )
\(\Rightarrow\Delta BAE=\Delta ACD\left(c.g.c\right)\)\(\Rightarrow BE=AD\)( 2 )
b) Từ ( 1 ) và ( 2 ) suy ra BE = BD nên \(\Delta BED\)cân tại B
Mà \(\widehat{ADC}=180^o-2.70^o=40^o\)
\(\Rightarrow\widehat{BED}=\widehat{EDB}=40^o\)và \(\widehat{EBD}=100^o\)
Câu 1.
Gọi DI là trung trực BC
Xét ΔBIDvà ΔCID:
IDchung
\(\widehat{BDI}=\widehat{CDI}=90^o\)(ID trung trực BC)
BD = CD(như trên)
⇒ΔBID = ΔCID (c.g.c )
⇒ \(\widehat{IBD}=\widehat{C}\)(2gtu)
\(\widehat{B}-\widehat{C}\) = 40
hay \(\widehat{B}-\widehat{IBD}\) = 40
Mà\(\widehat{IBD}+\widehat{ABI}=B\)
\(\Rightarrow\widehat{ABI}=\widehat{B}-\widehat{IBD}=40^o\)
1: AC=12cm
Xét ΔABC có AB<AC<BC
nên \(\widehat{C}< \widehat{B}< \widehat{A}\)
2: Xét ΔABC vuông tại A và ΔAEC vuông tại A có
AB=AE
AC chung
Do đó: ΔABC=ΔAEC
Suy ra: CB=CE