Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Vì G là trọng tâm tam giác ABC và AM là đường trung tuyến nên AG= \(\dfrac{2}{3}\)AM (tính chất ba đường trung tuyến của tam giác)
Do đó AG= \(\dfrac{2}{3}.AM=\dfrac{2}{3}.9=6\left(cm\right)\)
b) Vì G là trọng tâm tam giác ABC và AM là đường trung tuyến nên AG= \(\dfrac{2}{3}\)AM (tính chất ba đường trung tuyến của tam giác)
Do đó AM= \(\dfrac{AG}{\dfrac{2}{3}}=\dfrac{8}{\dfrac{2}{3}}=12\left(cm\right)\)
a,Áp dụng tính chất tổng ba góc trong 1 tam giác vào \(\Delta ABC\),có:
\(180^o=\widehat{A}+\widehat{B}+\widehat{C}\)
\(\Rightarrow\widehat{C}=180^o-(\widehat{A}+\widehat{B})\)
\(=180^o-140^o\)
\(=40^o\)
Vậy \(\widehat{C}=40^o\)
b,Vì \(\widehat{A}>\widehat{B}=\widehat{C}\left(100^o>40^o=40^o\right)\)
\(\Rightarrow BC>AC=AB\)(Quan hệ giữa góc và cạnh đối diện )
Vậy BC là cạnh lớn nhất của tam giác ABC
c, Vì G là trọng tâm của tam giác ABC
\(\Rightarrow AG=\frac{2}{3}AM\)
\(\Rightarrow AM=AG:\frac{2}{3}\)
\(\Rightarrow AM=8.\frac{3}{2}\)
\(\Rightarrow AM=12\left(cm\right)\)
Vậy AM=12 cm
k mik nha !
sorry mik vẽ hình ko đc chuẩn lắm thông cảm nha
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: BM=CM=3cm
=>AM=4cm
c: Xét ΔHBC có
HM vừa là đường cao, vừa là trung tuyến
=>ΔHBC cân tại H
a,XétΔABM và ΔACM có :
^AMB=^AMC(=90o)
AB=AC(GT)
AM :cạnh chung(gt)
Suy ra:ΔABM= ΔACM (ch-cgv)
=>MB=MC( 2 cạnh tương ứng)
b,Ta có MB=BC2 =242 = 12
Δ AMB vuông tại M có :
AM2+BM2=AB2 ( đl Pytago)
=>AM2=AB2−BM2
= 202−122
= 162
=>AM=16
Theo tính chất đường trung tuyến trong tam giác vuông thì ta có:
\(AG=2.GM=\frac{2}{3}AM=\frac{2}{3}.12=8\)(cm)
\(\Rightarrow GM=8:2=4\)(cm)