Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔABC cân tại A có AH là đường cao
nên H là trung điểm của BC
=>HB=HC=6/2=3cm
AH=căn 5^2-3^2=4cm
b: Gọi giao của BG với AC là M
=>M là trung điểm của AC
AG vuông góc BC
EC vuông góc BC
=>AG//CE
Xét ΔMAG và ΔMCE có
góc MAG=góc MCE
MA=MC
góc AMG=góc CME
=>ΔMAG=ΔMCE
=>AG=CE
a) Vì trong tam giác cân, đường vuông góc cũng là đường trung tuyến, đường phân giác, đường trung trực nên HB = HC
b) Xét \(\Delta\) vuông AHB có HB = HC = 1/2.BC = 1/2.6 = 3(cm)
\(\Rightarrow\) HB = 3(cm)
Áp dụng định lí Pitago ta có: AB^2 = AH^2 + HB^2
\(\Rightarrow\) AH^2 = AB^2 - HB^2 = 5^2 - 3^2 = 16
\(\Rightarrow\) AH = 4(cm)