Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(x^3+y^3+z^3=3xyz\)
\(\Leftrightarrow\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2+2xy-xz-yz\right)-3xy\left(x+y+z\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)\left[\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\right]=0\)(Nhân hai vế với 2)
\(\Leftrightarrow\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)
Tới đây bạn xét hai trường hợp nhé :)
(x+y+z)((X+Y)^2-Z(X+Y))-3XY(X+Y+Z)
=(X+Y+Z)(X^2+2XY+Y^2-XZ-YZ-3XY)
=(X+Y+Z)(X^2+Y^2+Z^2-XZ-YZ-XY)
a) xy(x + y) + yz(z + y) + zx(z + x) + 3xyz
= [xy(x + y) + xyz] + [yz(z + y) + xyz] + [zx(z + x) + xyz]
= xy(x + y + z) + yz(x + y + z) + zx(x + y + z)
= (xy + yz + zx)(x + y + z)
b) Vô câu hỏi tương tự
a) xy(x + y) + yz(z + y) + zx(z + x) + 3xyz
= [xy(x + y) + xyz] + [yz(z + y) + xyz] + [zx(z + x) + xyz]
= xy(x + y + z) + yz(x + y + z) + zx(x + y + z)
= (xy + yz + zx)(x + y + z)
b) tương tự
\(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3+z^3-3x^2y-3xy^2-3xyz\)
\(=\left(x+y\right)^3-3xy\left(x-y\right)+z^3-3xyz\)
\(=\left[\left(x+y\right)^3+z^3\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)^3-3z\left(x+y\right)\left(x+y+z\right)-3xy\left(x-y-z\right)\)
\(=\left(x+y+z\right)\left[\left(x+y+z\right)^2-3z\left(x+y\right)-3xy\right]\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2+2xy+2xz+2yz-3xz-3yz-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)
a) Ta có:
x³ + y³ + z³ - 3xyz = (x+y)³ - 3xy(x-y) + z³ - 3xyz
= [(x+y)³ + z³] - 3xy(x+y+z)
= (x+y+z)³ - 3z(x+y)(x+y+z) - 3xy(x-y-z)
= (x+y+z)[(x+y+z)² - 3z(x+y) - 3xy]
= (x+y+z)(x² + y² + z² + 2xy + 2xz + 2yz - 3xz - 3yz - 3xy)
= (x+y+z)(x² + y² + z² - xy - xz - yz).
Không mất tính tổng quát , giả sử : 0 < x < y < z
\(\Rightarrow x+y+z< z+z+z\)
\(\Rightarrow3xyz< 3z\)
\(\Rightarrow xy< 1\)( vô lí vì do x ; y nguyên dương và khác nhau nên xy > 1 )
Vậy không tồn tại 3 số x , y , z nguyên dương đã cho .
xy( x+ y) + yz(y+z) + xz(x+z) + 3xyz
= xy(x+y) + xyz + yz(y+z) + xyz + xz(x+z) + xyz
= zy(x+y+z) + yz(x + y + z) + xz ( x+y+z)
= ( x+ y +z )( xy + yz + zx)
Đẳng thức trên sai
Đẳng thức đúng phải là:
\(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)