K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2017

\(\sqrt{x+5}=1+\sqrt{x}\)

ĐKXĐ : \(x\ge0\)

\(pt\Leftrightarrow x+5=\left(1+\sqrt{x}\right)^2\)

\(\Leftrightarrow x+5=x+2\sqrt{x}+1\)

\(\Leftrightarrow x+5-x-2\sqrt{x}-1=0\)

\(\Leftrightarrow-2\sqrt{x}+4=0\)

\(\Leftrightarrow\sqrt{x}=2\Rightarrow x=4\)(TMĐKXĐ)

14 tháng 12 2018

DDK : \(x\ge1\)

\(\sqrt{x-1}-\sqrt{5x-1}=\sqrt{3x-2}\)

\(\Leftrightarrow\sqrt{x-1}=\sqrt{3x-2}+\sqrt{5x-1}\)

\(\Rightarrow x-1=3x-2+5x-2+2\sqrt{\left(3x-2\right)\left(5x-1\right)}\)

\(\Leftrightarrow x-1-3x+2-5x+2=2\sqrt{15x^2-3x-10x+2}\)

\(\Leftrightarrow3-7x=2\sqrt{15x^2-13x+2}\)

\(\Rightarrow9-42x+49x^2=4\left(15x^2-13x+2\right)\)

\(\Leftrightarrow9-42x+49x^2=60x^2-52x+8\)

\(\Leftrightarrow11x^2-10x-1=0\)

\(\Leftrightarrow11x^2-11x+x-1=0\)

\(\Leftrightarrow\left(11x+1\right)\left(x-1\right)=0\)

Giải nốt nha .

27 tháng 3 2020

a, Ta có phương trình

(m-1)x=m^2 -1 => (m-1)x-m^2+1 =0 (1)

Vậy phương trình (1) là phương trình bậc nhất (=) (m-1) khác 0.

(=) m khác 1

b, Ta có phương trình (1)

(m-1)x - m2 +1 = 0 => mx -x -m2 +1 = 0

+) Nếu m=1 => phương trình (1) có dạng 0x = 0

+) Nếu m khác 1 => Ptrinh (1) có nghiệm là x=(1-m2)/(m-1)

Vậy với m=1 ptinh có S=R

với m khác 1 ptrinh có S={(1-m2)/(m-1)}

Chúc bạn học tốt

11 tháng 5 2018

5x-2>2(x+3)\(\Leftrightarrow\)5x-2>2x+6

\(\Leftrightarrow\) 5x-2x>6+2

\(\Leftrightarrow\)3x>8

\(\Leftrightarrow\)x>\(\dfrac{8}{3}\)

0 8/3

Chúc bn học tốt❤

3 tháng 9 2017

ta có đề bài <=> 

\(\sqrt{\left(x-3\right)^2}+\sqrt{\left(x+5\right)^2}=8\)

<=> \(\left|x-3\right|+\left|x+5\right|=8\)

<=>\(\left|3-x\right|+\left|x+5\right|=8\)

Áp dụng tính chât dấu giá trị tuyệt đối ta có 

\(\left|3-x\right|+\left|x+5\right|>=\left|3-x+x+5\right|=8\)

dấu = xảy ra <=> \(\left(3-x\right)\left(x+5\right)>=0\)

đến đây bạn tự giaỉ dấu = nhé

31 tháng 3 2017

Ta có: x ( x+ 2 ) > x3 - x + 6   (1)

<=> x+ 2x > x- x + 6

<=> 3x > 6

<=> x > 2 

Vậy tập nghiệm của phương trình (1) là S = { x | x > 2 }