K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2020

giải bài này theo cách này đc k ạ

\n\n

\\(\\sqrt{a}\\le\\sqrt{b}\\Leftrightarrow\\left\\{{}\\begin{matrix}a\\ge0\\\\a< b\\end{matrix}\\right.\\)

\n
7 tháng 5 2020

\\(\\sqrt{a}\\le\\sqrt{b}\\Leftrightarrow\\left\\{{}\\begin{matrix}a\\ge0\\\\a\\le b\\end{matrix}\\right.\\)

\n\n

e ghi lộn

\n
18 tháng 4 2020

Câu 6:

\(\hept{\begin{cases}\frac{x+3}{2x-3}-\frac{x}{2x-1}\le0\\\sqrt{x^2+3}+3< 1\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{2x^2-x+6x-3-2x^2+3x}{\left(2x-3\right)\left(2x-1\right)}\le0\\x^2+3< \left(1-3x\right)^2\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}8x-3\le0\\x^2+3< 1-6x+9x^2\end{cases}\Leftrightarrow\hept{\begin{cases}8x-3\le0\\8x^2-6x-2< 0\end{cases}\Leftrightarrow}\hept{\begin{cases}x< \frac{3}{8}\\\frac{-1}{4}x< x< \frac{1}{4}\end{cases}\Rightarrow}S\left(\frac{-1}{4};\frac{3}{8}\right)}\)

NV
16 tháng 1 2021

a. ĐKXĐ: \(x\ge-1\)

\(y=\sqrt{x^3+1+2\sqrt{x^3+1}+1}+\sqrt{x^3+1-2\sqrt{x^3+1}+1}\)

\(=\sqrt{\left(\sqrt{x^3+1}+1\right)^2}+\sqrt{\left(\sqrt{x^3+1}-1\right)^2}\)

\(=\left|\sqrt{x^3+1}+1\right|+\left|1-\sqrt{x^3+1}\right|\ge\left|\sqrt{x^3+1}+1+1-\sqrt{x^3+1}\right|=2\)

b.

\(f\left(x\right)=\dfrac{x-1}{2}+\dfrac{2}{x-1}+\dfrac{1}{2}\ge2\sqrt{\dfrac{2\left(x-1\right)}{2\left(x-1\right)}}+\dfrac{1}{2}=\dfrac{5}{2}\)

c.

\(y=\dfrac{x-2018+1}{\sqrt{x-2018}}=\sqrt{x-2018}+\dfrac{1}{\sqrt{x-2018}}\ge2\sqrt{\dfrac{\sqrt{x-2018}}{\sqrt{x-2018}}}=2\)

3 tháng 12 2021

a, ĐKXĐ:\(x\ne-3\)

\(x+1+\dfrac{2}{x+3}=\dfrac{x+5}{x+3}\\ \Leftrightarrow x+1=\dfrac{x+5}{x+3}-\dfrac{2}{x+3}\\ \Leftrightarrow x+1=\dfrac{x+3}{x+3}\\ \Leftrightarrow x+1=1\\ \Leftrightarrow x=0\left(tm\right)\)

b, ĐKXĐ:\(x>2\)

\(\dfrac{x^2-4x-2}{\sqrt{x-2}}=\sqrt{x-2}\\ \Leftrightarrow x^2-4x-2=x-2\\ \Leftrightarrow x^2-5x=0\\ \Leftrightarrow x\left(x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=5\left(tm\right)\end{matrix}\right.\)

NV
25 tháng 1 2022

ĐKXĐ: \(-1\le x\le\dfrac{5}{2}\)

\(\Leftrightarrow\sqrt{3x+3}-3+1-\sqrt{5-2x}=x^3-3x^2-10x+24\)

\(\Leftrightarrow\dfrac{3\left(x-2\right)}{\sqrt{3x+3}+3}+\dfrac{2\left(x-2\right)}{1+\sqrt{5-2x}}=\left(x-2\right)\left(x-4\right)\left(x+3\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\\dfrac{3}{\sqrt{3x+3}+3}+\dfrac{2}{1+\sqrt{5-2x}}=\left(x-4\right)\left(x+3\right)\left(1\right)\end{matrix}\right.\)

Xét (1), ta có:

\(\dfrac{3}{\sqrt{3x+3}+3}+\dfrac{2}{1+\sqrt{5-2x}}>0\)

\(-1\le x\le\dfrac{5}{2}\Rightarrow\left\{{}\begin{matrix}x+3>0\\x-4< 0\end{matrix}\right.\) \(\Rightarrow\left(x+3\right)\left(x-4\right)< 0\)

\(\Rightarrow\left(1\right)\) vô nghiệm hay pt có nghiệm duy nhất \(x=2\)

27 tháng 1 2022

Em cảm ơn

18 tháng 6 2016

cái j zị

18 tháng 6 2016

đề bị sao r đó

16 tháng 4 2020

a/ ĐKXĐ: \(\left\{{}\begin{matrix}x\le3\\x\ge5\end{matrix}\right.\) => bpt vô nghiệm

b/ ĐKXĐ: \(x>1\)

\(bpt\Leftrightarrow x-2< 2\Leftrightarrow x< 4\)

\(\Rightarrow1< x< 4\)

c/ \(\frac{x+2}{3}-2x-2>0\)

\(\Leftrightarrow\frac{x+2-6x-6}{3}>0\Leftrightarrow x+2-6x-6>0\Leftrightarrow x< -\frac{4}{5}\)

d/ \(bpt\Leftrightarrow\frac{3x+5}{2}-\frac{x+2}{3}-x-1\le0\)

\(\Leftrightarrow\frac{9x+15-2x-4-6x-6}{6}\le0\)

\(\Leftrightarrow x\le-5\)