Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải hệ \(2x^2-2xy-y^2+2=2y-4x.\)
và\(\sqrt{x^2-2y^2}+\sqrt{\left(2x+1\right)\left(2y-2\right)}=x+y\)
\(y\left(x+1\right)^2=-x^2+2018x-1\)
\(\Leftrightarrow y=\dfrac{-x^2+2018x-1}{\left(x+1\right)^2}=-1+\dfrac{2020x}{\left(x+1\right)^2}\)
\(\Rightarrow\dfrac{2020x}{\left(x+1\right)^2}\in Z\)
Mà x và \(x\left(x+2x\right)+1\) nguyên tố cùng nhau
\(\Rightarrow2020⋮\left(x+1\right)^2\)
Ta có 2020 chia hết cho đúng 2 số chính phương là 1 và 4
\(\Rightarrow\left[{}\begin{matrix}\left(x+1\right)^2=1\\\left(x+1\right)^2=4\end{matrix}\right.\) \(\Rightarrow x=\left\{0;1\right\}\) \(\Rightarrow y\)
b.
Từ pt đầu:
\(x^2+xy-2y^2+2\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+2y\right)+2\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+2y+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-2y-2\end{matrix}\right.\)
Thế xuống dưới ...
\(\sqrt{x^2+y^2-2xy+2x-2y+5}+2y^2-8y+2015\)
\(=\sqrt{\left(x^2+y^2-2xy\right)+2\left(x-y\right)+1+4}+2\left(y^2-4y+4\right)+2007\)\(=\sqrt{\left(x-y+1\right)^2+4}+2\left(y-2\right)^2+2007\ge2007\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}x-y+1=0\\y-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Lời giải:
PT(1): \(x^3-2x^2y+x=y^3-2xy^2+y\)
\(\Leftrightarrow (x^3-y^3)-2xy(x-y)+(x-y)=0\)
\(\Leftrightarrow (x-y)(x^2+xy+y^2)-2xy(x-y)+(x-y)=0\)
\(\Leftrightarrow (x-y)(x^2-xy+y^2+1)=0\)
Ta thấy:
\(x^2-xy+y^2+1=(x-\frac{y}{2})^2+\frac{3y^2}{4}+1\geq 1>0\) với mọi số thực x,y
Do đó: \(x-y=0\Leftrightarrow x=y\)
Thay vào PT(2):
\(\sqrt{y-1}+\sqrt{5-y}=-y^2+2y+1\)
Xét: \(\text{VT}^2=4+2\sqrt{(y-1)(5-y)}\geq 4\) nên \(\text{VT}\geq 2\) hoặc \(\text{VT}\leq -2\). Mà vế trái luôn không âm nên:
\(\Rightarrow \text{VT}\geq 2\)
Xét \(\text{VP}=-(y^2-2y+1)+2=2-(y-1)^2\leq 2\forall y\in\mathbb{R}\)
\(\text{VT}=\text{VP}\Leftrightarrow \text{VT}=\text{VP}=2\)
Dấu bằng xảy ra khi \(y=1\)
Vậy \((x,y)=(1,1)\)
ĐKXĐ: \(\left\{{}\begin{matrix}0\le x\le\frac{1}{2}\\0\le y\le\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow xy\le\frac{1}{4}\)
Từ pt đầu: \(\Leftrightarrow\frac{4}{1+2xy}=\left(\frac{1}{\sqrt{1+2x^2}}+\frac{1}{\sqrt{1+2y^2}}\right)^2\le2\left(\frac{1}{1+2x^2}+\frac{1}{1+2y^2}\right)\)
\(\Leftrightarrow\frac{2}{1+2xy}\le\frac{1}{1+2x^2}+\frac{1}{1+2y^2}\)
\(\Leftrightarrow\frac{1}{1+2x^2}+\frac{1}{1+2y^2}-\frac{2}{1+2xy}\ge0\)
\(\Leftrightarrow\frac{2\left(2xy-1\right)\left(x-y\right)^2}{\left(1+2x^2\right)\left(1+2y^2\right)\left(1+2xy\right)}\ge0\) (2)
Do \(xy\le\frac{1}{4}< \frac{1}{2}\Rightarrow2xy-1< 0\)
\(\Rightarrow\left(2\right)\) xảy ra khi và chỉ khi \(x-y=0\Leftrightarrow x=y\)
Thế vào pt dưới:
\(2\sqrt{x\left(1-2x\right)}=\frac{2}{9}\Leftrightarrow x\left(1-2x\right)=\frac{1}{81}\Leftrightarrow...\)
Lâu rồi hổng thấy ai giải nên giải luôn ak
Ta có \(5x^2+2xy+2y^2=\left(2x+y\right)^2+\left(x-y\right)^2\ge\left(2x+y\right)^2\Rightarrow\sqrt{5x^2+2xy+2y^2}\ge2x+y.\)
\(2x^2+2xy+5y^2=\left(x+2y\right)^2+\left(x-y\right)^2\ge\left(x+2y\right)^2\Rightarrow\sqrt{2x^2+2xy+5y^2}\ge x+2y.\)
Suy ra \(Q\ge3\left(x+y\right)=3.1=3\)dấu = xảy ra khi \(\hept{\begin{cases}x+y=1\\x-y=0\end{cases}\Leftrightarrow}x=y=\frac{1}{2}\)
EZ game
Xét x=y=0
Xét x và y khác 0
Cộng từng vế hai phương trình
Đánh giá VP >= VT