K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
7 tháng 10 2021

Lời giải:

a. Đặt $f(x)=x+\sqrt{2x^2+1}$

$f'(x)=1+\frac{2x}{\sqrt{2x^2+1}}=0\Leftrightarrow x=\frac{-1}{\sqrt{2}}$

Lập BBT ta thấy:

$f_{\min}=f(\frac{-1}{\sqrt{2}})=\frac{\sqrt{2}}{2}$

\(f(x)\to +\infty \) khi \(x\to +\infty; x\to -\infty \)

Do đó $x+\sqrt{2x^2+1}=m$ có nghiệm khi $m\geq \frac{\sqrt{2}}{2}$

b. TXĐ: $x\in [3;+\infty)$

BPT $\Leftrightarrow m(x-1)\leq \sqrt{x-3}+1$

$\Leftrightarrow m\leq \frac{\sqrt{x-3}+1}{x-1}$

Xét $f(x)=\frac{\sqrt{x-3}+1}{x-1}$
$f'(x)=0\Leftrightarrow x=7-2\sqrt{3}$

Lập BBT ta thấy $f_{\max}=f(7-2\sqrt{3})=\frac{1+\sqrt{3}}{4}$
Để BPT có nghiệm thì $m\leq \frac{1+\sqrt{3}}{4}$

 

 

NV
27 tháng 6 2021

a.

\(\Leftrightarrow x^3+3x^2+x+1\ge mx\) ; \(\forall x\ge0\) (1)

- Với \(x=0\) thỏa mãn

- Với \(x>0\)

(1) \(\Leftrightarrow x^2+3x+1+\dfrac{1}{x}\ge m\)

\(\Leftrightarrow m\le\min\limits_{x>0}\left(x^2+3x+1+\dfrac{1}{x}\right)\)

Xét \(f\left(x\right)=x^2+3x+1+\dfrac{1}{x}\) với \(x>0\)

\(f'\left(x\right)=2x+3-\dfrac{1}{x^2}=0\Leftrightarrow\dfrac{\left(2x-1\right)\left(x+1\right)^2}{x^2}=0\Rightarrow x=\dfrac{1}{2}\)

Từ BBT ta thấy \(f\left(x\right)_{min}=f\left(\dfrac{1}{2}\right)=\dfrac{19}{4}\)

\(\Rightarrow m\le\dfrac{19}{4}\)

13 tháng 9 2018

Đáp án B

NV
2 tháng 9 2021

- Với \(m=0\) hàm ko có tiệm cận

- Với \(m< 0\Rightarrow\) miền xác định của hàm số ko chứa vô cực \(\Rightarrow\) ĐTHS ko có tiệm cận ngang

- Với \(m>0\)

\(\lim\limits_{x\rightarrow-\infty}\dfrac{x}{\sqrt{mx^2+1}}=\lim\limits_{x\rightarrow-\infty}\dfrac{1}{-\sqrt{m+\dfrac{1}{x^2}}}=-\dfrac{1}{\sqrt{m}}\)

\(\lim\limits_{x\rightarrow+\infty}\dfrac{x}{\sqrt{mx^2+1}}=\lim\limits_{x\rightarrow+\infty}\dfrac{1}{\sqrt{m+\dfrac{1}{x^2}}}=\dfrac{1}{\sqrt{m}}\)

\(\Rightarrow\) ĐTHS có 2 TCN khi \(m>0\)

AH
Akai Haruma
Giáo viên
19 tháng 8 2021

Để đồ thị hàm số $y$ thế nào hả bạn?

25 tháng 3 2017