K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2019

Minh AnNgọc HnueBăng Băng 2k6Thảo PHồ Đđề bài khó wáỖ CHÍ DŨNGBảo TrâmhLương Minh HằngươngAnh Qua

30 tháng 11 2019

c/

\(=1-\frac{11}{14}-\frac{14}{12}+\frac{5}{6}+\frac{-5}{3}:\frac{-10}{3}\)

\(=1-\frac{11}{14}-\frac{14}{12}+\frac{5}{6}+\frac{-5}{3}.\frac{-3}{10}\)

\(=1-\frac{11}{14}-\frac{14}{12}+\frac{5}{6}+\frac{1}{2}\)

\(=1-\left(\frac{66}{84}+\frac{98}{84}-\frac{70}{84}-\frac{42}{84}\right)\)

\(\frac{1}{\sqrt{1}}< \frac{1}{\sqrt{121}}\)

\(\frac{1}{\sqrt{2}}< \frac{1}{\sqrt{121}}\)

................

\(\frac{1}{\sqrt{121}}=\frac{1}{\sqrt{121}}\)

Suy ra \(\frac{1}{\sqrt{1}}\)+\(\frac{1}{\sqrt{2}}\)+.............+\(\frac{1}{\sqrt{121}}\)<\(\frac{1}{\sqrt{121}}+\frac{1}{\sqrt{121}}+\frac{1}{\sqrt{121}}+......\frac{1}{\sqrt{121}}\)=\(\frac{121}{11}\)=11(đpcm)(vì có 121 chữ số)\(\frac{1}{\sqrt{121}}\))

30 tháng 3 2019

Khuyển Dạ Xoa : \(\sqrt{1}< \sqrt{121}\Rightarrow\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{121}}\)  chứ?

25 tháng 7 2016

346/105

16 tháng 7 2017

= 2/3+3/7+11/5

=23/21+11/5

=346/105

 Xin lỗi bn máy mình ko viết được căn

6 tháng 11 2016

a)\(\sqrt{9.4}=\sqrt{36}=6;\sqrt{9}.\sqrt{4}=3.2=6\Rightarrow\sqrt{9.4}=\sqrt{9}.\sqrt{4}\)

b)\(\sqrt{169-144}=\sqrt{25}=5;\sqrt{169}-\sqrt{144}=13-12=1\Rightarrow\sqrt{169-144}>\sqrt{169}-\sqrt{144}\)

6 tháng 11 2016

tra loi ho mik lun di mai ik hoc roi !chut chut chuit chut

17 tháng 3 2019

\(\frac{3x+25}{144}=\frac{2y-169}{25}=\frac{z+144}{169}=\frac{3x+2y+z}{338}=\frac{169}{338}=\frac{1}{2}\)

\(\Rightarrow3x+25=\frac{1}{2}.144=72\)

\(\Leftrightarrow x=\frac{47}{3}\)

\(2y-169=\frac{1}{2}.25=\frac{25}{2}\)

\(\Leftrightarrow y=\frac{363}{4}\)

\(z+144=\frac{1}{2}.169=\frac{169}{2}\)

\(\Leftrightarrow z=\frac{-119}{2}\)

17 tháng 3 2019

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{3x+25}{144}=\frac{2y-169}{25}=\frac{z+144}{169}=\frac{\left(3x+2y+z\right)+\left(25-169+144\right)}{144+25+169}=\frac{169+25-169+144}{144+25+169}=\)

\(\frac{1}{2}\)

Ta có

\(\frac{3x+25}{144}=\frac{1}{2}\Rightarrow6x+50=144\Rightarrow6x=94\Rightarrow x=\frac{47}{3}\)

\(\frac{2y-169}{25}=\frac{1}{2}\Rightarrow4y-338=25\Rightarrow4y=363\Rightarrow y=\frac{363}{4}\)

\(\frac{z+144}{169}=\frac{1}{2}\Rightarrow2z+288=169\Rightarrow2z=-119\Rightarrow z=\frac{-119}{2}\)