Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Rút gọn
\(\frac{\left(x\sqrt{y}+y\sqrt{x}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}y}=\frac{\sqrt{x}^3\sqrt{y}-xy+yx-\sqrt{x}\sqrt{y}^3}{\sqrt{x}y}=\frac{x}{\sqrt{y}}-y\)
\(M=\frac{y\sqrt{x-1}+x\sqrt{y-4}}{xy}=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-4}}{y}\)
Áp dụng BĐT Cauchy : \(\frac{\sqrt{x-1}}{x}=\frac{\sqrt{\left(x-1\right).1}}{x}\le\frac{x-1+1}{2x}=\frac{1}{2}\)
\(\frac{\sqrt{y-4}}{y}=\frac{\sqrt{\left(y-4\right).4}}{4y}\le\frac{y-4+4}{4y}=\frac{1}{4}\)
Cộng theo vế : \(M\le\frac{1}{2}+\frac{1}{4}=\frac{3}{4}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x=2\\y=8\end{cases}}\)
Vậy ......................................
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}< =>\frac{a+b}{ab}\ge\frac{4}{a+b}< =>\left(a+b\right)^2\ge4ab< =>\left(a-b\right)^2\ge0\left(lđ\right).\)
Dấu "=" xảy ra khi a=b
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\frac{b\left(a+b\right)+a\left(a+b\right)-4ab}{ab\left(a+b\right)}\ge0\)
\(\Leftrightarrow\frac{a^2-2ab+b^2}{ab\left(a+b\right)}\ge0\)
\(\Leftrightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)(luon dung)
1.\(DK:x\le\frac{1}{3}\)
2.\(DK:x\ge-1\)
3.\(DK:-1\le x< 1\)
\(\frac{1}{4}\)
\(\sqrt{\frac{1}{16}=\frac{1}{4}}\)
~ Ai tk mk mk tk lại nha ~
tk nha Nguyễn Lan Hương