Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(3\dfrac{17}{24}+\left(2\dfrac{8}{15}-4\dfrac{8}{15}\right):\left(2\dfrac{11}{30}-\dfrac{11}{30}\right)\)
\(=\dfrac{89}{24}-2:2\)
\(=\dfrac{65}{24}\)
b,\(0,5:\sqrt{625}-\sqrt{\dfrac{4}{25}}+0,18.\left(\sqrt{1\dfrac{9}{16}}-\sqrt{\dfrac{9}{16}}\right)\)
\(=0,5:25-\dfrac{2}{5}+0,18.\dfrac{1}{2}\)
\(=-\dfrac{29}{100}\)
\(A=\sqrt{625}-\dfrac{1}{\sqrt{5}}=25-\dfrac{1}{\sqrt{5}}\)
\(B=\sqrt{576}-\dfrac{1}{\sqrt{6}}+1=24-\dfrac{1}{\sqrt{6}}+1=25-\dfrac{1}{\sqrt{6}}.\)
Vì \(\sqrt{5}< \sqrt{6}\) nên \(\dfrac{1}{\sqrt{5}}>\dfrac{1}{\sqrt{6}}.\)
Từ (1), (2) và (3) suy ra \(A< B.\)
\(\sqrt{9765+\sqrt{1296}}+\sqrt{15+\sqrt{95481}}+\sqrt{1271+\sqrt{625}}\)
\(=\sqrt{9765+\sqrt{36^2}}+\sqrt{15+\sqrt{309^2}}+\sqrt{1271+\sqrt{25^2}}\)
\(=\sqrt{9765+36}+\sqrt{15+309}+\sqrt{1271+25}\)
\(=\sqrt{9801}+\sqrt{324}+\sqrt{1296}\)
\(=\sqrt{99^2}+\sqrt{18^2}+\sqrt{36^2}\)
\(=99+18+36\)
\(=117+36\)
\(=153\)