Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{7-2\sqrt{10}}-\sqrt{7+2\sqrt{10}}=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{5}+\sqrt{2}\right)}=\sqrt{5}-\sqrt{2}+\sqrt{5}+\sqrt{2}=2\sqrt{5}\)
Giải
Ta có:
\(x=\sqrt{2+\sqrt{2+\sqrt{3}}-\sqrt{6-3\sqrt{2+\sqrt{3}}}}\)
Khi đó:
\(x^2=\left(\sqrt{2+\sqrt{2+\sqrt{3}}-\sqrt{6-3\sqrt{2+\sqrt{3}}}}\right)^2\\ =2+\sqrt{2+\sqrt{3}}+6-3\sqrt{2+\sqrt{3}}-2\sqrt{\left(2+\sqrt{2+\sqrt{3}}\right)\left(6-3\sqrt{2+\sqrt{3}}\right)}\\ =8-2\sqrt{2+\sqrt{3}}-2\sqrt{12-3\left(2+\sqrt{3}\right)}\\ =8-\sqrt{2}.\sqrt{4+2\sqrt{3}}-2\sqrt{6-3\sqrt{3}}\\ =8-\sqrt{2}.\sqrt{4+2\sqrt{3}}-\sqrt{2}.\sqrt{12-6\sqrt{3}}\\ =8-\sqrt{2}.\left(\sqrt{4+2\sqrt{3}}+\sqrt{12-6\sqrt{3}}\right)\\ =8-\sqrt{2}.\left(\sqrt{\left(\sqrt{3}\right)^2+2\sqrt{3}+1}+\sqrt{9-2.3\sqrt{3}+\left(\sqrt{3}\right)^2}\right)\\ 8-\sqrt{2}.\left(\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(3-\sqrt{3}\right)^2}\right)\\ =8-\sqrt{2}.\left(\sqrt{3}+1+3-\sqrt{3}\right)\\ =8-4\sqrt{2}\\ \Rightarrow x^4-16x^2=\left(8-4\sqrt{2}\right)^2-16.\left(8-4\sqrt{2}\right)\\ =96-64\sqrt{2}-128+64\sqrt{2}=-32\)
Vậy \(S=-32\)
1/ Bạn trên làm rồi mình không làm lại.
2/ \(\frac{3+\sqrt{5}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}+\frac{3-\sqrt{5}}{\sqrt{2}-\sqrt{3}-\sqrt{5}}=\frac{\left(3+\sqrt{5}\right)\left(\sqrt{2}+\sqrt{3}-\sqrt{5}\right)}{\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)\left(\sqrt{2}+\sqrt{3}-\sqrt{5}\right)}+\frac{\left(3-\sqrt{5}\right)\left(\sqrt{2}-\sqrt{3}+\sqrt{5}\right)}{\left(\sqrt{2}-\sqrt{3}-\sqrt{5}\right)\left(\sqrt{2}-\sqrt{3}+\sqrt{5}\right)}\)
\(=\frac{3\sqrt{2}+3\sqrt{3}-3\sqrt{5}+\sqrt{10}+\sqrt{15}-5}{2\sqrt{6}}+\frac{3\sqrt{2}-3\sqrt{3}+3\sqrt{5}-\sqrt{10}+\sqrt{15}-5}{-2\sqrt{6}}\)
\(=\frac{3\sqrt{2}+3\sqrt{3}-3\sqrt{5}+\sqrt{10}+\sqrt{15}-5-3\sqrt{2}+3\sqrt{3}-3\sqrt{5}+\sqrt{10}-\sqrt{15}+5}{2\sqrt{6}}\)
\(=\frac{6\sqrt{3}-6\sqrt{5}+2\sqrt{10}}{2\sqrt{6}}=\frac{3}{\sqrt{2}}-\frac{3\sqrt{5}}{\sqrt{6}}+\frac{\sqrt{5}}{\sqrt{3}}=\frac{9\sqrt{2}-3\sqrt{30}+2\sqrt{15}}{6}\)
\(\frac{x^2-2x+2007}{2007x^2}=\frac{x^2}{2007x^2}-\frac{2x}{2007x^2}+\frac{2007}{2007x^2}=\frac{1}{2007}-\frac{2}{2007x}+\frac{1}{x^2}\)
đặt t = 1/x
=> \(\frac{1}{2007}-\frac{2}{2007x}+\frac{1}{x^2}=\frac{1}{2007}-\frac{2t}{2007}+t^2=\frac{1}{2007}-\frac{2t}{2007}+\frac{2007t^2}{2007}=\frac{2007t^2-2t+1}{2007}\)
giải theo kiểu casio 570 VN PLUS cho nhanh nhé
bấm MODE 5 3 2007 = -2 = 1 = = = = =
ra gtnn của 2007t2 - 2t + 1 là 2006/2007 tại t = 1/2007
vậy gtnn của \(\frac{2007t^2-2t+1}{2007}\)là \(\frac{\frac{2006}{2007}}{2007}\)tại t = 1/2007
t = 1/2007 => 1/x = 1//2007 => x = 2007
vậy x = 2007 thì biểu thức có gtnn
\(=\sqrt{7-2\sqrt{21}+3}+\sqrt{7+2\sqrt{21}+3}\)
\(=\sqrt{\sqrt{7}^2-2\sqrt{7}.\sqrt{3}+\sqrt{3}^2}+\sqrt{\sqrt{7}^2+2\sqrt{7}.\sqrt{3}+\sqrt{3}^2}\)
\(=\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{7}+\sqrt{3}\right)^2}\)
\(=\left|\sqrt{7}-\sqrt{3}\right|+\left|\sqrt{7}+\sqrt{3}\right|\)
\(=\sqrt{7}-\sqrt{3}+\sqrt{7}+\sqrt{3}\)
\(=2\sqrt{7}\)
\(\sqrt{10-2\sqrt{21}}+\sqrt{10+2\sqrt{21}}\)
\(=\sqrt{7}-\sqrt{3}+\sqrt{7}+\sqrt{3}\)
\(=2\sqrt{7}\)
\(A=\left(\dfrac{2\sqrt{x}}{\sqrt{x}-3}+\dfrac{x}{3\sqrt{x}-x}\right).\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\sqrt{x}+3}\left(dkxd:x\ne0;\pm\sqrt{3}\right)\)
\(=\left(\dfrac{2}{\sqrt{x}-3}-\dfrac{x}{\sqrt{x}\left(\sqrt{x}-3\right)}\right).\left(\sqrt{x}-3\right)\)
\(=\left(\dfrac{2\sqrt{x}-x}{\sqrt{x}\left(\sqrt{x}-3\right)}\right).\left(\sqrt{x}-3\right)\)
\(=\dfrac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}}\)
\(=2-\sqrt{x}\)
Vậy \(A=2-\sqrt{x}\)
Cái này chắc rút gọn :
\(\sqrt{2+\sqrt{3}}=\dfrac{\sqrt{2.2+2\sqrt{3}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{4+2\sqrt{3}}}{\sqrt{2}}=\dfrac{\sqrt{3+2\sqrt{3}+1}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{2}}=\dfrac{\sqrt{3}+1}{\sqrt{2}}\)