Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x=1
Mik tính bằng máy tính đó. Mik mới học lớp 8 thôi, chưa giải được. ^^
1,
\(D=\frac{1}{\sqrt{h+2\sqrt{h-1}}}+\frac{1}{\sqrt{h-2\sqrt{h-1}}}\)
\(=\frac{1}{\sqrt{h-1+2\sqrt{h-1}+1}}+\frac{1}{\sqrt{h-1-2\sqrt{h-1}+1}}\)
\(=\frac{1}{\sqrt{h-1}+1}+\frac{1}{\sqrt{h-1}-1}\)
\(=\frac{\sqrt{h-1}-1+\sqrt{h-1}+1}{h-1-1}\)
\(=\frac{2\sqrt{h-1}}{h-2}\)
Thay \(h=3\)vào D ta có:
\(D=\frac{2\sqrt{3-1}}{3-2}=2\sqrt{2}\)
Vậy với \(h=3\)thì \(D=2\sqrt{2}\)
2,
a, \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)(ĐK: \(x\ge1\))
\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)
\(\Leftrightarrow-2\sqrt{x-1}=-2\)
\(\Leftrightarrow\sqrt{x-1}=1\Leftrightarrow x=2\left(TM\right)\)
Vậy PT có nghiệm là \(x=2\)
b, \(\sqrt{9x^2+18}+2\sqrt{x^2+2}-\sqrt{25x^2+50}+3=0\)(ĐK: \(-\sqrt{2}\le x\le\sqrt{2}\))
\(\Leftrightarrow3\sqrt{x^2+2}+2\sqrt{x^2+2}-5\sqrt{x^2+2}=-3\)
\(\Leftrightarrow0=-3\)(vô lí)
Vậy PT đã cho vô nghiệm.
\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right):\left(\frac{2}{x^2-1}-\frac{x}{x-1}+\frac{1}{x+1}\right)\) Đkxđ : x khác 1 ; x khác -1
\(A=\frac{\left(x+1\right)^2-\left(x-1\right)^2}{x^2-1}:\frac{2-x\left(x+1\right)+x-1}{x^2-1}\)
\(A=\frac{x^2+2x+1-x^2+2x-1}{x^2-1}.\frac{x^2-1}{2-x^2-1+x-1}\)
\(A=\frac{4x}{-x^2+x}=\frac{4x}{x\left(1-x\right)}\)
\(A=\frac{4}{1-x}\)
Có cách khác nè:
P=x4(x−1)3+y4(y−1)3≥2√x4y4(x−1)3(y−1)3x4(x−1)3+y4(y−1)3≥2x4y4(x−1)3(y−1)3
⇒P≥2x2y2√(x−1)3(y−1)3=2.x2x−1.y2y−1.1√(x−1)(y−1)⇒P≥2x2y2(x−1)3(y−1)3=2.x2x−1.y2y−1.1(x−1)(y−1)
Ta dễ dàng chứng minh được a2a−1≥4a2a−1≥4
⇒P≥2.4.4.1√(x−1)(y−1)≥32.1x−1+y−12≥32⇒P≥2.4.4.1(x−1)(y−1)≥32.1x−1+y−12≥32
Dấu "=" khi x=y=2
x4(x−1)3+16(x−1)≥8.x2(x−1)x4(x−1)3+16(x−1)≥8.x2(x−1)
Tương tự và cộng hai BĐT lại :
p+16(x−1)+16(y−1)≥8.(x2x−1+y2y−1)p+16(x−1)+16(y−1)≥8.(x2x−1+y2y−1)
Ta xét A=x2x−1+y2y−1A=x2x−1+y2y−1
Đặt x - 1 = a và y - 1 = b, ta có A=(a+1)2a+(b+1)2b=a+2+1a+b+2+1b≥(a+b)+4a+b+4≥2√4+4=8⇒A≥8A=(a+1)2a+(b+1)2b=a+2+1a+b+2+1b≥(a+b)+4a+b+4≥24+4=8⇒A≥8
Do đó P≥8A−16(x+y)+32≥8.8−16.4+32=32P≥8A−16(x+y)+32≥8.8−16.4+32=32
Min P = 32 <=> x = y = 2
đặt \(\sqrt{x-\sqrt{x^2-1}}=a\) và \(\sqrt{x+\sqrt{x^2-1}}=b\)
ta có hệ pt \(\hept{\begin{cases}ab=1\\\sqrt{a}+b=2\end{cases}}\)
đến đây cậu giải nốt nha
\(=\frac{x-1}{2\sqrt{x}}.\frac{\sqrt{x}\left(\sqrt{x}-1\right)^2-\sqrt{x}\left(\sqrt{x}+1\right)^2}{x-1}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-1-\sqrt{x}-1\right)\left(\sqrt{x}-1+\sqrt{x}+1\right)}{2\sqrt{x}}\)
\(=\frac{-2.2\sqrt{x}}{2}\)
\(=-2\sqrt{x}\)
Thank bạn bài vừa rồi đã k cho mk^^
ĐK: \(4x^2+5x+1\ge0\Leftrightarrow\left(4x+1\right)\left(x+1\right)\ge0\)
<=>\(\orbr{\begin{cases}x\le-1\\x\ge\frac{-1}{4}\end{cases}}\)
PT trên tương đương: \(\sqrt{4x^2+5x+1}-\sqrt{4x^2-4x+4}=9x-3\)
Đặt \(a=\sqrt{4x^2+5x+1}\ge0;b=\sqrt{4x^2-4x+4}>0\) ta có hệ PT:
\(\hept{\begin{cases}a-b=9x-3\\a^2-b^2=9x-3\end{cases}}\Leftrightarrow a-b=a^2-b^2\)
<=>a-b=(a-b)(a+b)
<=>(a-b)(1-a-b)=0
<=>a=b hoặc 1-a-b=0
*Khi a=b thì: \(\sqrt{4x^2+5x+1}=\sqrt{4x^2-4x+4}\Leftrightarrow9x-3=0\)
<=>x=1/3(nhận)
*Khi 1-a-b=0 =>a+b=1
=>\(\sqrt{4x^2+5x+1}+\sqrt{4x^2-4x+4}=1\)(vô lí vì: \(\sqrt{4x^2+5x+1}+\sqrt{4x^2-4x+4}\ge\sqrt{3}>1\))
Vậy tập nghiệm của PT là: S={1/3}
\(\sqrt{2-x^2}+\sqrt{2-\frac{1}{x^2}}=4-\left(x+\frac{1}{x}\right)\)
\(\Rightarrow2-x^2+2-\frac{1}{x^2}+2\sqrt{\left(2-x^2\right)\left(2-\frac{1}{x^2}\right)}=16-8\left(x+\frac{1}{x}\right)+\left(x+\frac{1}{x}\right)^2\)
\(\Rightarrow4-\left(x^2+\frac{1}{x^2}\right)+2\sqrt{5-2\left(x^2+\frac{1}{x^2}\right)}=16-8\left(x+\frac{1}{x}\right)+\left(x+\frac{1}{x}\right)^2\)
\(\Rightarrow x^2+\frac{1}{x^2}+2\sqrt{5-2\left(x^2+\frac{1}{x^2}\right)}=8\left(x+\frac{1}{x}\right)-\left(x+\frac{1}{x}\right)^2-12\)
Đặt \(a=x+\frac{1}{x}\Rightarrow\left|a\right|=\left|x+\frac{1}{x}\right|=\left|x\right|+\frac{1}{\left|x\right|}\ge2\Rightarrow\left|a\right|\ge2\)
Phươn trình trở thành:
\(a^2-2+2\sqrt{5-2\left(a^2-2\right)}=8a-a^2-12\)
Tớ nghĩ là theo cách này có vẻ khả quan