Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{13+\sqrt{30\sqrt{2+\sqrt{8+2.2\sqrt{2+1}}}}}\)
\(=\sqrt{13+\sqrt{30\sqrt{2+\sqrt{\left(2\sqrt{2}+1\right)^2}}}}=\sqrt{13+\sqrt{30\sqrt{2+2\sqrt{2+1}}}}\)
\(=\sqrt{13+\sqrt{30\sqrt{\left(\sqrt{2}+1\right)^2}}}=\sqrt{13+\sqrt{30\left(\sqrt{2}+1\right)}}=\sqrt{13+\sqrt{30\sqrt{2}+30}}\)
\(\sqrt{\frac{5+2\sqrt{6}}{5-2\sqrt{6}}}+\sqrt{\frac{5-2\sqrt{6}}{5+2\sqrt{6}}}=\sqrt{\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{\left(\sqrt{3}-\sqrt{2}\right)^2}}+\sqrt{\frac{\left(\sqrt{3}-\sqrt{2}\right)^2}{\left(\sqrt{3}+\sqrt{2}\right)^2}}\)
\(=\frac{\sqrt{2}+\sqrt{3}}{\sqrt{3}-\sqrt{2}}+\frac{\sqrt{3}-\sqrt{2}}{\sqrt{2}+\sqrt{3}}=\frac{\left(\sqrt{2}+\sqrt{3}\right)^2+\left(\sqrt{3}-\sqrt{2}\right)^2}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}=\frac{5+2\sqrt{6}+\left(5-2\sqrt{6}\right)}{3-2}=10\)
a. ĐKXĐ : x>1.
b. \(A=\left(\dfrac{4}{x-\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right):\dfrac{1}{\sqrt{x}-1}=\left[\dfrac{4}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right].\left(\sqrt{x}-1\right)=\dfrac{4+\sqrt{x}.\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\left(\sqrt{x}-1\right)=\dfrac{4+x}{\sqrt{x}}\)
c. Thay \(x=4-2\sqrt{3}\) vào A, ta có:
\(A=\dfrac{4+4-2\sqrt{3}}{\sqrt{4-2\sqrt{3}}}=\dfrac{8-2\sqrt{3}}{\sqrt{\left(\sqrt{3}-1\right)^2}}=\dfrac{8-2\sqrt{3}}{\sqrt{3}-1}=\dfrac{\left(8-2\sqrt{3}\right)\left(\sqrt{3}+1\right)}{3-1}=\dfrac{8\sqrt{3}+8-6-2\sqrt{3}}{2}=\dfrac{2+6\sqrt{3}}{2}=\dfrac{2\left(1+3\sqrt{3}\right)}{2}=1+3\sqrt{3}\)
Vậy giá trị của A tại \(x=4-2\sqrt{3}\) là \(1+3\sqrt{3}\).
Ta có : \(x=\sqrt{\frac{5}{2}}+\sqrt{\frac{2}{5}}=\frac{5+2}{\sqrt{10}}=\frac{7}{\sqrt{10}}>0\)
Do đó : \(A=\sqrt{10x^2}-12x\sqrt{10}+36=x\sqrt{10}-12x\sqrt{10}+36=36-11x\sqrt{10}\)
\(=36-11.\sqrt{10}.\frac{7}{\sqrt{10}}=36-77=-41\)
\(\sqrt{11-2\sqrt{30}}-\sqrt{11+2\sqrt{30}}\)
\(=\sqrt{\left(\sqrt{6}-\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{6}+\sqrt{5}\right)^2}\)
\(=\sqrt{6}-\sqrt{5}-\sqrt{6}-\sqrt{5}\)
\(=-2\sqrt{5}\)
\(\left(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\frac{5-\sqrt{5}}{1-\sqrt{5}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}.\)
\(=\left(\frac{\sqrt{7}\left(\sqrt{2}-1\right)}{1-\sqrt{2}}+\frac{\sqrt{5}\left(\sqrt{5}-1\right)}{1-\sqrt{5}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}.\)
\(=\left(\frac{-\sqrt{7}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}+\frac{-\sqrt{5}\left(1-\sqrt{5}\right)}{1-\sqrt{5}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}.\)
\(=\left(\left(-\sqrt{7}\right)+\left(-\sqrt{5}\right)\right)\cdot\frac{\sqrt{7}-\sqrt{7}}{1}\)
\(=-\left(\sqrt{7}+\sqrt{5}\right)\cdot\frac{\sqrt{7}-\sqrt{5}}{1}\)
\(=\frac{-\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)}{1}\)
\(=\frac{-\left(7-5\right)}{1}=-2\)
\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{13+30\sqrt{2+\sqrt{\left(2\sqrt{2}+1\right)^2}}}\)
\(=\sqrt{13+30\sqrt{2+2\sqrt{2}+1}}=\sqrt{13+30\sqrt{\left(\sqrt{2}+1\right)^2}}\)
\(=\sqrt{13+30\left(\sqrt{2}+1\right)}=\sqrt{13+30\sqrt{2}+30}\)
\(=\sqrt{\left(5+3\sqrt{2}\right)^2}=5+3\sqrt{2}\)