K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2016

Ta có : \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x\left(x+2\right)}=\frac{16}{34}\)

=> \(2\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x\left(x+2\right)}\right)=2.\frac{16}{34}\)

=> \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{x\left(x+2\right)}=\frac{16}{17}\)

=> \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{16}{17}\)

=> \(1-\frac{1}{x+2}=\frac{16}{17}\)

=> \(\frac{1}{x+2}=1-\frac{16}{17}=\frac{1}{17}\)

=> \(x+2=17\)

=> \(x=15\)

4 tháng 1 2016

=>1/1-1/3+1/3-1/5+1/5-1/7+....+1/x-1/(x+2)=16/34

=>1/1-1/(x+2)=16/34

=>1/(x+2)=1-16/34

=>1/(x+2)=9/17

=>(x+2).9=17

=>(x+2)=17/9

=>x=17/9-2

=>x=-1/9(không là số tự nhiên)

vậy không có số tự nhiên x thoả mãn điều kiện bài toán 

2 tháng 1 2016

Giải rõ ràng. Không được thử số

20 tháng 1 2018

a, Ta có \(\frac{x-1}{2011}+\frac{x-2}{2010}-\frac{x-3}{2009}=\frac{x-4}{2008}\)

<=> \(\frac{x-1}{2011}+\frac{x-2}{2010}-\frac{x-3}{2009}-\frac{x-4}{2008}=0\)

<=> \(\left(\frac{x-1}{2011}-1\right)+\left(\frac{x-2}{2010}-1\right)-\left(\frac{x-3}{2009}-1\right)-\left(\frac{x-4}{2008}-1\right)=0\)

<=>\(\frac{x-2012}{2011}+\frac{x-2012}{2010}-\frac{x-2012}{2009}-\frac{x-2012}{2008}=0\) 

<=> \(\left(x-2012\right)\left(\frac{1}{2011}+\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\right)=0\)

Mà \(\frac{1}{2011}+\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\ne0\)

=> \(x-2012=0=>x=2012\)

20 tháng 1 2018

b, \(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{\left(2x-1\right)\left(2x+1\right)}=\frac{49}{99}\)

=>\(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{\left(2x-1\right)\left(2x+1\right)}=2\cdot\frac{49}{99}\)

=>\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2x-1}-\frac{1}{2x+1}=\frac{98}{99}\)

=>\(1-\frac{1}{2x+1}=\frac{98}{99}\)

=>\(\frac{2x}{2x+1}=\frac{98}{99}\)

=>2x = 98

=>x = 49

10 tháng 1 2016

bài 1

[(x+2)/1010]+ [(x+2)/1111]= [(x+2)/1212]+[(x+2)/1313]

=>[(x+2)/1010]+[(x+2)/1111] - [(x+2)/1212]-[(x+2)/1313] = 0

=>(x+2).[(1/1010)+(1/1111)-(1/1212)-(1/1313)=0

Vì [(1/1010)+(1/1111)-(1/1212)-(1/1313)] khác 0

=>x+2=0

=>x=-2

 

10 tháng 1 2016

Bài 1: x=-2

Bài 2:x=17

Bài 3:x=2014

y=2010

 

18 tháng 2 2016

ta nhân vế trái vs 2:

\(\frac{2}{1.3}+\frac{2}{3.5}+......+\frac{2}{x\left(x+2\right)}=\frac{8}{17}\)

\(\frac{1}{ }-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{x}-\frac{1}{x+2}=\frac{8}{17}\)

\(1-\frac{1}{x+2}=\frac{8}{17}\)

\(\Rightarrow17\left(x+1\right)=8\left(x+2\right)\)

\(\Rightarrow17x+17=8x+16\)

\(\Rightarrow17x-8x=-17+16\)

\(\Rightarrow9x=-1\)

\(\Rightarrow x=\frac{-1}{9}\)

18 tháng 2 2016

2(1/1.3+1/3.5+1/5.7+...+1/x(x+2) )=16/34 *2

2/1.3+2/3.5+2/5.7+...+2/x(x+2)=32/34=16/17

1/1-1/3+1/3-1/5+1/5-1/7+...+1/x-1/x+2=16/17

1/1-1/x+2=16/17

1/x+2=1/1-16/17

1/x+2=1/17

suy ra x+2=17

         x=17=2=15

19 tháng 12 2015

=> \(2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{16}{34}\)

=>\(2.\left(1-\frac{1}{x+2}\right)=\frac{16}{34}\)

=>\(1-\frac{1}{x+2}=\frac{4}{17}\)

=> \(\frac{1}{x+2}=\frac{13}{17}\)

=>\(x=-\frac{9}{13}\)

16 tháng 12 2016

1/2[2/1.3+2/3.5+2/5.7+.........+2/x(x+2)]=16/34

2/1.3+2/3.5+2/5.7+......+2/x(x+2)=16/34:1/2=16/17

1/1-1/3+1/3-1/5+1/5-1/7+.....+1/x-1/x+2=16/17

1-1/x+2=16/17

1/x+2=1-16/17=1/17

suy ra:x+2=17

x=17-2

x=15