Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a3 có tất cả 40 ước
Theo đề bài ta có:
a = p1m . p2n \(⇒\) a2 = p12m . p22n.
Số ước của a2 là (2m + 1).(2n + 1) = 21 (ước)
\(⇒\) m = 1 ; n = 3 hoặc m = 3 ; n = 1
Số a3 = p13m . p23n có số ước là [(3m + 1) . (3n + 1)] (ước)
-Với m = 1 ; n = 3 thì a3 có (3.1 + 1) . (3.3 + 1) = 4 . 10 = 40 (ước)
-Với m = 3 ; n = 1 thì a3 có (3.3 + 1) . (3.1 + 1) = 10 . 4 = 40 (ước)
Dạng phân tích ra thừa số nguyên tố của n là n=ax.by(x ,y khác 0)
Ta có :n2=a2x.b3y có (2x+1)(2y+1)ước số nên (2x+1)(2y+1)=21
Gỉả sử x bé hơn hoặc bằng y,ta được x=1 và y=3
n3=a3x.b3ycó (3x+1)(3y+1) ước ,tức là có 4.10=40 (ước)
Nga này
Chắc là tớ làm đúng .Cậu cứ đọc qua đi ,nếu thấy đúng thì chép vào và nhớ chọn đúng nge chưa?
Gọi số phải tìm là n; số chính phương đó là a; gọi b là số tự nhiên mà n là lập phương của nó.
Ta thấy n chia hết cho 2 và 3 (vì số chính phương hay lập phương của một số tự nhiên đều là số tự nhiên) nên để n nhỏ nhất, ta chọn n = 2x.3y (x và y khác 0).
n : 2 = 2x.3y : 2 = 2x-1.3y = a2 suy ra x - 1 và y đều chia hết cho 2 hay đều là số chẵn.
n : 3 = 2x.3y : 3 = 2x.3y-1 = b3 suy ra x và y - 1 đều chia hết cho 3.
Từ x - 1 chia hết cho 2 và x chia hết cho 3, để nhỏ nhất ta chọn x = 3
Từ y chia hết cho 2 và y - 1 chia hết cho 3, để nhỏ nhất ta chọn y = 4
Vậy n = 23.34 = 648
Số cần tìm là 648.
Làm được rồi nè:
Dạng phân tích ra thừa số nguyên tố của n là n = ax.by ( x, y \(\ne\) 0).
Ta có n2 = a2x.b2y có (2x + 1).(2y + 1) ước số nên (2x + 1).(2y + 1) = 21.
Giả sử x \(\le\) y, ta được x = 1 và y = 3
n3 = a3x.b3y có (3x + 1).(3y + 1) ước số, tức là có 4.10 = 40 (ước)
Vậy n3 có 40 ước số.
dạng phân tích của n= a^x.b^y(x,y khác 0)
n^2=a^2x.b^2y
có:(2x+1).(2y+1)=21
giả sử x<y =>x=1,y=3
n^3=a^3x.b^3y =>(3x+1).(3y+1)=(3.1+1).(3.3+1)=40
vậy n^3 có 40 ước