Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{1}{1.1.3}+\frac{1}{2.3.5}+\frac{1}{3.5.7}+\frac{1}{4.7.9}+...+\frac{1}{100.199.201}\)
\(S=\frac{1}{3}+\frac{2}{4.3.5}+\frac{2}{6.5.7}+\frac{2}{8.7.9}+...+\frac{2}{200.199.201}\)
Ta có: \(\frac{2}{3.4.5}< \frac{2}{3.5}\)
\(\Rightarrow S< \frac{1}{3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{199.201}\)
\(\Rightarrow S< \frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{199}-\frac{1}{201}\)
\(\Rightarrow S< \frac{1}{3}+\frac{1}{3}-\frac{1}{201}\)
\(\Rightarrow S< \frac{2}{3}-\frac{1}{201}< \frac{2}{3}\)
\(\Rightarrow S< \frac{2}{3}\)
Chúc học tốt.
Lời giải:
a) Số hạng thứ $n$: \(\frac{1}{n(2n-1)(2n+1)}\)
b) Tổng $A$ có 2011 số hạng có dạng là:
\(A=\frac{1}{1.1.3}+\frac{1}{2.3.5}+....+\frac{1}{2011.4021.4023}\)
\(A=\frac{2}{2.1.3}+\frac{2}{4.3.5}+\frac{2}{6.5.7}+....+\frac{2}{4022.4021.4023}\)
\(=\frac{2}{1.2.3}+\frac{2}{3.4.5}+\frac{2}{5.6.7}+...+\frac{2}{4021.4022.4023}\)
\(< \frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{2011.2012.2013}\)
$A< \frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{2013-2011}{2011.2012.2013}$
$A< \frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-....-\frac{1}{2012.2013}$
$A< \frac{1}{2}-\frac{1}{2012.2013}< \frac{1}{2}< \frac{2}{3}$
Câu 2:
a: \(\Leftrightarrow12x-60=7x-5\)
=>5x=55
=>x=11
b: \(\Leftrightarrow\left(2x-3\right)^{2010}\left[\left(2x-3\right)^2-1\right]=0\)
=>(2x-3)(2x-2)(2x-4)=0
hay \(x\in\left\{\dfrac{3}{2};1;2\right\}\)