K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2018

trên mạng có đó Triphai Tyte

3 tháng 11 2018

cho mình xin link đi

20 tháng 4 2017

Đặt \(\hept{\begin{cases}a=x+2011\\b=y+2011\\c=z+2011\end{cases}}\) Ta có Hệ:

\(\hept{\begin{cases}\sqrt{a}+\sqrt{b+1}+\sqrt{c+2}\left(A\right)=\sqrt{b}+\sqrt{c+1}+\sqrt{a+2}\left(B\right)\\\sqrt{b}+\sqrt{c+1}+\sqrt{a+2}\left(B\right)=\sqrt{c}+\sqrt{a+1}+\sqrt{b+2}\left(C\right)\end{cases}}\)

Vai trò \(x,y,z\) bình đẳng

Giả sử \(c=Max\left(a;b;c\right)\) vì \(A=C\) ta có:

\(\sqrt{a}+\sqrt{b+1}+\sqrt{c+2}=\sqrt{c}+\sqrt{a+1}+\sqrt{b+2}\)

\(\Leftrightarrow\left(\sqrt{a+1}-\sqrt{a}\right)+\left(\sqrt{b+2}-\sqrt{b+1}\right)\)

\(=\sqrt{c+2}-\sqrt{c}=\left(\sqrt{c+2}-\sqrt{c+1}\right)+\left(\sqrt{c+1}-\sqrt{c}\right)\)

\(\Leftrightarrow\frac{1}{\sqrt{a+1}+\sqrt{a}}+\frac{1}{\sqrt{b+2}+\sqrt{b+1}}\)

\(=\frac{1}{\sqrt{c+2}+\sqrt{c+1}}+\frac{1}{\sqrt{c+1}+\sqrt{c}}\left(1\right)\)

Mặt khác \(\hept{\begin{cases}c\ge a\Rightarrow\frac{1}{\sqrt{a+1}+\sqrt{a}}\le\frac{1}{\sqrt{c+1}+\sqrt{c}}\\c\ge b\Rightarrow\frac{1}{\sqrt{b+2}+\sqrt{b+1}}\le\frac{1}{\sqrt{c+2}+\sqrt{c+1}}\end{cases}}\)

Suy ra \(\left(1\right)\) xảy ra khi \(a=b=c\Leftrightarrow x=y=z\) (Đpcm)

1 tháng 7 2017

Giả sử z là số lớn nhất trong 3 số 

Từ đề bài ta có:

\(\sqrt{x+2011}+\sqrt{y+2012}+\sqrt{z+2013}=\sqrt{z+2011}+\sqrt{x+2012}+\sqrt{y+2013}\)

\(\Leftrightarrow\sqrt{x+2012}-\sqrt{x+2011}+\sqrt{y+2013}-\sqrt{y+2012}=\sqrt{z+2012}-\sqrt{z+2011}+\sqrt{z+2013}-\sqrt{z+2012}\)

\(\Leftrightarrow\frac{1}{\sqrt{x+2012}+\sqrt{x+2011}}+\frac{1}{\sqrt{y+2013}+\sqrt{y+2012}}=\frac{1}{\sqrt{z+2012}+\sqrt{z+2011}}+\frac{1}{\sqrt{z+2013}+\sqrt{z+2012}}\)

Ta lại có:

\(\hept{\begin{cases}\frac{1}{\sqrt{x+2012}+\sqrt{x+2011}}\ge\frac{1}{\sqrt{z+2012}+\sqrt{z+2011}}\\\frac{1}{\sqrt{y+2013}+\sqrt{y+2012}}\ge\frac{1}{\sqrt{z+2013}+\sqrt{z+2012}}\end{cases}}\)

Dấu = xảy ra khi x = y = z

Tương tự cho trường hợp x lớn nhất với y lớn nhất.

5 tháng 7 2017

fdy 'rshniytguo;yhuyt65edip;ioy86fo87ogtb eubuiltgr6sdwjhytguyh8 ban oi bai nay mac kho giai vao cut sit

7 tháng 6 2018

a) Có \(\sqrt{25}=5;\sqrt{45}< \sqrt{49}=7\)

\(\Rightarrow\sqrt{25}+\sqrt{45}< 5+7=12\)

Vậy \(\sqrt{25}+\sqrt{45}< 12.\)

b) có \(\left(\sqrt{2013}+\sqrt{2015}\right)^2=2013+2015+2\sqrt{2013}.\sqrt{2015}\)\(=4028+2\sqrt{2013.2015}\)

\(\left(2\sqrt{2014}\right)^2=4.2014=4028+2.2014=4028+2\sqrt{2014^2}\)

Xét \(2014^2-2013.2015=2014.\left(2013+1\right)-2013\left(2014+1\right)\)

\(=2013.2014+2014-2013.2014-2013=1>0\)

\(\Rightarrow2\sqrt{2013.2015}< 2\sqrt{2014^2}\)

Hay \(\left(\sqrt{2013}+\sqrt{2015}\right)^2< \left(2\sqrt{2014}\right)^2\)

\(\Rightarrow\sqrt{2013}+\sqrt{2015}< 2\sqrt{2014}\)
Vậy \(\sqrt{2013}+\sqrt{2015}< 2\sqrt{2014}.\)

c) Có \(\left(\sqrt{2014}-\sqrt{2013}\right)\left(\sqrt{2014}+\sqrt{2013}\right)=2014-2013=1\)\(\rightarrow\sqrt{2014}-\sqrt{2013}=\dfrac{1}{\sqrt{2014}+\sqrt{2013}}\)

\(\sqrt{2014}>\sqrt{2013};\sqrt{2013}>\sqrt{2012}\)

\(\rightarrow\sqrt{2014}+\sqrt{2013}>\sqrt{2013}+\sqrt{2012}\)

Hay \(\dfrac{1}{\sqrt{2014}+\sqrt{2013}}< \dfrac{1}{\sqrt{2013}+\sqrt{2012}}\)

Tương tự, ta có \(\dfrac{1}{\sqrt{2013}+\sqrt{2012}}=\sqrt{2013}-\sqrt{2012}\)

\(\Rightarrow\sqrt{2014}-\sqrt{2013}< \sqrt{2013}-\sqrt{2012}\)

Vậy \(\sqrt{2014}-\sqrt{2013}< \sqrt{2013}-\sqrt{2012}.\)

7 tháng 6 2018

lop8. thi ap bdt nhu thanh song,

a)

VT=√25+√45<√2(25+45)=√140<√144=12=VP

b)

VT=√2013+√2015<√[2(2013+2015)]=√[4.2014]=2√(2014)=VP.

c) C=VT-VP

√2014+√2012-2√2012

kq(b)=> C<0

VT<VP

20 tháng 8 2015

ta có A+B 

=\(\sqrt{2013}-\sqrt{2012}+\sqrt{2014}-\sqrt{2013}\)         =\(-\sqrt{2012}+\sqrt{2014}\)      (1)

vì (1)>0 nên A+B>0 hay A>B

28 tháng 2 2016

A=\(\sqrt{2013}\)\(\sqrt{2012}\) =\(\frac{1}{\sqrt{2013}+\sqrt{2012}}\)

B=\(\sqrt{2014}-\sqrt{2013}=\frac{1}{\sqrt{2014}+\sqrt{2013}}\)

sao sanh \(A=\frac{1}{\sqrt{2013}+\sqrt{2012}}>\frac{1}{\sqrt{2014}+\sqrt{2013}}\)

h cho minh nhieu nha