Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(27^{11}=\left(3^3\right)^{11}=3^{33};81^8=\left(3^4\right)^8=3^{32}\rightarrow27^{11}>81^8\)
a)b) phân tích ra đơn giản rồi
c)
\(5^{36}=5^{6\cdot6}=\left(5^6\right)^6=15625^6\)
\(11^{24}=11^{6\cdot4}=\left(11^4\right)^6=14641^6\)
=> tự kết luận
d)
\(3^{2n}=\left(3^2\right)^n=9^n\)
\(2^{3n}=\left(2^3\right)^n=8^n\)
=> tự kết luận
27^11 và 81^8
27^11=(3^3)^11=3^33
81^8=(3^4)^8=3^32
vì 32<32 -> 27^11 >81^8
còn lại tương tự nha
1.So Sánh
a,27^11 và 81^8
Ta có: 2711 = (33)11 = 33.11 = 333
818 = (34)11 = 34.11 = 344
Mà 33 < 34 => 333 < 334 => 2711 < 818
Câu b tương tự
c,5^36 và 11^24
Ta có: 536 = 512.3 = (53)12 = 125 12
1124 = 1112.2 = (112)12 = 12112
Mà 121< 125 => 12112 < 125 12 => 1124 <536
d,3^2n và 2^3n (với n thuộc N*)
Ta có 32n = (32)n = 9n
23n = (23)n = 8n
Mà 9>8 => 9n > 8n => 32n > 23n
a. Ta có : 27 ^11 = (3^3)^11= 3^33
81^8=(3^4)^8 = 3 ^32
=> 27^11>81^8
b. 625^5= (5^4)^5=5^20
125^7=(5^3)^7=5^21
=> 125^7>625^5
c. 5^36= (5^3)^12 =125^12
11^24=(11^2)^12= 121^12
=> 5^36>11^24
d. 3^2n = 9^n
2^3n= 8^n
=> 3^2n>2^3n
\(a,27^{11}\)và \(81^8\)
Ta có:
\(27^{11}=\left(3^3\right)^{11}=3^{33}\)
\(81^8=\left(3^4\right)^8=3^{32}\)
Vì \(3^{33}>3^{32}\Rightarrow27^{11}>81^8\)
\(b,625^5\)và \(125^7\)
Ta có:
\(625^5=\left(5^4\right)^5=5^{20}\)
\(125^7=\left(5^3\right)^7=5^{21}\)
Vì \(5^{20}< 5^{21}\Rightarrow625^5< 125^7\)
a. \(\hept{\begin{cases}27^{11}=3^{3.11}=3^{33}\\81^8=3^{4.8}=3^{32}\end{cases}\Rightarrow27^{11}>81^8}\)
b.\(\hept{\begin{cases}625^5=5^{4.5}=5^{20}\\125^7=5^{3.7}=5^{21}\end{cases}\Rightarrow625^5< 125^7}\)
c.\(\hept{\begin{cases}5^{36}=125^{12}\\11^{24}=121^{12}\end{cases}\Rightarrow5^{36}>11^{24}}\)
d. \(\hept{\begin{cases}3^{2n}=9^n\\2^{3n}=8^n\end{cases}\Rightarrow3^{2n}>2^{3n}}\)
a) Ta có 2711 = (33)11 = 33.11 = 333
=> 818 = (34)8 = 34.8 = 332
Vì 333 > 332
=> 2711 > 818
b) Ta có : 6255 = (54)5 = 54.5 = 520
Lại có 1257 = (53)7 = 53.7 = 521
Vì 520 < 521
=> 6255 < 1257
c) Ta có 536 = 53.12 = (53)12 = 12512
Lại có 1124 = 112.12 = (112)12 = 12112
Vì 125 > 121 => 12512 > 12112 => 536 > 1124
d) Ta có 32n = (32)n = 9n
Lại có 23n = (23)n = 8n
Vì \(n\inℕ^∗\)=> 9n > 8n => 32n > 23n