Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2 vế bằng nhau
100-(1+1/2+1/3+...+1/100) = 1/2+2/3+3/4+...+99/100
100- 1-1/2-1/3-...-1/100 = 1/2+2/3+3/4+...+99/100
100 = 1 + 1/2 + 1/2 + 1/3 + 2/3 + ... + 1/100 + 99/100 (cùng cộng 2 vế với (- 1-1/2-1/3-...-1/100)
100 = 1 + 1 + 1 + ... + 1 (100 số hạng)
100 = 100
Vậy 100-(1+1/2+1/3+...+1/100) = 1/2+2/3+3/4+...+99/100
a/\(\frac{\left(2^3.5.7\right).\left(5^2.7^3\right)}{\left(2.5.7^2\right)^2}\)
=\(\frac{2^3.5^3.7^4}{2^2.5^2.7^4}\)
=2.5
=10
1/ Tính:
\(\frac{3}{2}-\frac{5}{6}+\frac{7}{12}-\frac{9}{20}+\frac{11}{30}-\frac{13}{42}+\frac{15}{56}-\frac{17}{72}+\frac{19}{90}\)
\(=\frac{3}{1.2}-\frac{5}{2.3}+\frac{7}{3.4}-\frac{9}{4.5}+\frac{11}{5.6}-\frac{13}{6.7}+\frac{15}{7.8}-\frac{17}{8.9}+\frac{19}{9.10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)
a,\(\frac{-3}{1.3}+\frac{-3}{3.5}+....+\frac{-3}{97.99}\)
= -3.\(\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}\right)\)
=\(\frac{-3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{97}-\frac{1}{99}\right)\)
=\(\frac{-3}{2}\left(1-\frac{1}{99}\right)\)
=\(\frac{-3}{2}.\frac{98}{99}\)
=\(\frac{49}{-33}\)>\(\frac{49}{-20}\)