Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta có: 200920=(20092)10=403608110 ; 2009200910=2009200910
Vì 403608110< 2009200910 => 200920< 2009200910
Bài 1:
Ta có:\(2009^{20}\)=\(2009^{10}\).\(2009^{10}\)
\(20092009^{10}\)=(\(\left(2009.10001\right)^{10}=2009^{10}.10001^{10}\)
Vì 2009<10001\(\Rightarrow2009^{20}< 20092009^{10}\)
Ta có: \(\frac{2^{2008}-3}{2^{2007}-1}=\frac{\left(2^{2008}-2\right)-1}{2^{2007}-1}=\frac{2\left(2^{2007}-1\right)-1}{2^{2007}-1}=2-\frac{1}{2^{2007}-1}\)
CMTT ta có \(\frac{2^{2007}-3}{2^{2006}-1}=2-\frac{1}{2^{2006}-1}\)
MÀ 22006-1<22007-1 => \(\frac{1}{2^{2006}-1}>\frac{1}{2^{2007}-1}\Rightarrow2-\frac{1}{2^{2006}-1}< 2-\frac{1}{2^{2007}-1}\)
Từ đó \(\Rightarrow\frac{2^{2008}-3}{2^{2007}-1}>\frac{2^{2007}-3}{2^{2006}-1}\)
So sánh\(A=\frac{2^{2006}+7}{2^{2004}+7}\)và\(B=\frac{2^{2003}+1}{2^{2001}+1}\)
A A > B
B A = B
C A < B
Bài 1:
a) Sửa lại là: \(3^{n+2}-2^{n+2}+3^n-2^n⋮10\) nhé.
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
\(=3^n.\left(3^2+1\right)-2^n.\left(2^2+1\right)\)
\(=3^n.\left(9+1\right)-2^n.\left(4+1\right)\)
\(=3^n.\left(9+1\right)-2^{n-1}.2.\left(4+1\right)\)
\(=3^n.10-2^{n-1}.2.5\)
\(=3^n.10-2^{n-1}.10\)
\(=10.\left(3^n-2^{n-1}\right)\)
Vì \(10⋮10\) nên \(10.\left(3^n-2^{n-1}\right)⋮10.\)
\(\Rightarrow3^{n+2}-2^{n+2}+3^n-2^n⋮10\left(đpcm\right)\left(\forall n\in N^X\right).\)
Chúc bạn học tốt!