Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,2\sqrt{2}=\sqrt{8}< \sqrt{9}=3\\ \Leftrightarrow6+2\sqrt{2}< 3+6=9\\ b,\left(\sqrt{11}-\sqrt{3}\right)^2=14-2\sqrt{33}\\ 2^2=4=14-10\\ \left(2\sqrt{33}\right)^2=132>100=10^2\Leftrightarrow-2\sqrt{33}< -10\\ \Leftrightarrow\sqrt{11}-\sqrt{3}< 2\)
a)
Có:
\(2\sqrt{29}=\sqrt{4.29}=\sqrt{116}\\ 3\sqrt{13}=\sqrt{9.13}=\sqrt{117}\)
Vì \(\sqrt{117}>\sqrt{116}\) nên \(3\sqrt{13}>2\sqrt{29}\)
b)
Có:
\(\dfrac{5}{4}\sqrt{2}=\sqrt{\dfrac{25}{16}.2}=\sqrt{\dfrac{25}{8}}\)
\(\dfrac{3}{2}\sqrt{\dfrac{3}{2}}=\sqrt{\dfrac{9}{4}.\dfrac{3}{2}}=\sqrt{\dfrac{27}{8}}\)
Do \(\sqrt{\dfrac{27}{8}}>\sqrt{\dfrac{25}{8}}\) nên \(\dfrac{3}{2}\sqrt{\dfrac{3}{2}}>\dfrac{5}{4}\sqrt{2}\)
c)
Có:
\(5\sqrt{2}=\sqrt{25.2}=\sqrt{50}\)
\(4\sqrt{3}=\sqrt{16.3}=\sqrt{48}\)
Vì \(\sqrt{50}>\sqrt{48}\) nên \(5\sqrt{2}>4\sqrt{3}\)
d)
Có:
\(\dfrac{5}{2}\sqrt{\dfrac{1}{6}}=\sqrt{\dfrac{25}{4}.\dfrac{1}{6}}=\sqrt{\dfrac{25}{24}}\)
\(6\sqrt{\dfrac{1}{37}}=\sqrt{36.\dfrac{1}{37}}=\sqrt{\dfrac{36}{37}}\)
lại có: \(\dfrac{25}{24}>\dfrac{36}{37}\)
\(\Rightarrow\dfrac{5}{2}\sqrt{\dfrac{1}{6}}>6\sqrt{\dfrac{1}{37}}\)
a) \(3\sqrt{3}=\sqrt{27}>\sqrt{12}\)
b) \(3\sqrt{5}=\sqrt{45}>\sqrt{27}\)
c) \(\dfrac{1}{3}\sqrt{51}=\sqrt{\dfrac{51}{9}}< \sqrt{\dfrac{54}{9}}=6=\sqrt{\dfrac{150}{25}}=\dfrac{1}{5}\sqrt{150}\)
d) \(\dfrac{1}{2}\sqrt{6}=\sqrt{\dfrac{6}{4}}=\sqrt{\dfrac{3}{2}}< \sqrt{\dfrac{36}{2}}=6\sqrt{\dfrac{1}{2}}\)
a) \(2=\sqrt{4}>\sqrt{3}\)
b) \(6=\sqrt{36}< \sqrt{41}\)
c) \(7=\sqrt{49}>\sqrt{47}\)
Lời giải:
a.
$\sqrt{8}+\sqrt{15}+1<\sqrt{9}+\sqrt{16}+1=3+4+1=8=\sqrt{64}< \sqrt{65}$
$\Rightarrow \sqrt{8}+\sqrt{15}< \sqrt{65}-1$
b.
$(2\sqrt{3}+6\sqrt{2})^2=84+24\sqrt{6}< 84+24\sqrt{9}< 169$
$\Rightarrow 2\sqrt{3}+6\sqrt{2}< 13$
$\Rightarrow \frac{13-2\sqrt{3}}{6}> \sqrt{2}$
a) Ta có :\(20< 25\Rightarrow\sqrt{20}< \sqrt{25}\Leftrightarrow2\sqrt{5}< 5\)
b) Ta có : \(\dfrac{16}{9}< 12\Rightarrow\sqrt{\dfrac{16}{9}}< \sqrt{12}\Leftrightarrow\dfrac{1}{3}\cdot\sqrt{16}< \sqrt{12}\)
a: \(2\sqrt{5}=\sqrt{20}\)
\(5=\sqrt{25}\)
mà 20<25
nên \(2\sqrt{5}< 5\)
b: \(\dfrac{1}{3}\cdot\sqrt{16}=\sqrt{\dfrac{1}{9}\cdot16}=\sqrt{\dfrac{16}{9}}\)
\(\sqrt{12}=\sqrt{\dfrac{108}{9}}\)
mà 16<9
nên \(\dfrac{1}{3}\sqrt{16}< \sqrt{12}\)
a) Ta có: \(2\sqrt{3}=\sqrt{4\cdot3}=\sqrt{12}\)
\(3\sqrt{2}=\sqrt{9\cdot2}=\sqrt{18}\)
mà \(\sqrt{12}< \sqrt{18}\)(vì 12<18)
nên \(2\sqrt{3}< 3\sqrt{2}\)
b) Ta có: \(\left(2\sqrt{3}+1\right)^2=8+4\sqrt{3}+1=9+4\sqrt{3}\)
\(4^2=16=9+7\)
mà \(4\sqrt{3}< 7\left(\sqrt{48}< \sqrt{49}\right)\)
nên \(\left(2\sqrt{3}+1\right)^2< 4^2\)
hay \(2\sqrt{3}+1< 4\)
c) Ta có: \(\sqrt{2015}-\sqrt{2014}=\dfrac{1}{\sqrt{2015}+\sqrt{2014}}\)
\(\sqrt{2014}-\sqrt{2013}=\dfrac{1}{\sqrt{2014}+\sqrt{2013}}\)
Ta có: \(\sqrt{2015}+\sqrt{2014}>\sqrt{2013}+\sqrt{2014}\)
\(\Leftrightarrow\dfrac{1}{\sqrt{2015}+\sqrt{2014}}< \dfrac{1}{\sqrt{2013}+\sqrt{2014}}\)
hay \(\sqrt{2015}-\sqrt{2014}< \sqrt{2014}-\sqrt{2013}\)
c.
(\sqrt{5}-\sqrt{3})-(\sqrt{10}-\sqrt{7})=(\sqrt{5}+\sqrt{7})-(\sqrt{3}+\sqrt{10})
Mà:
\((\sqrt{5}+\sqrt{7})^2=12+\sqrt{35}< 12+\sqrt{36}=18\)
\((\sqrt{3}+\sqrt{10})^2=13+\sqrt{30}>13+\sqrt{25}=18\)
\(\Rightarrow \sqrt{3}+\sqrt{10}> \sqrt{5}+\sqrt{7}\Rightarrow \sqrt{5}-\sqrt{3}< \sqrt{10}-\sqrt{7}\)
Lời giải:
a.
$5+\sqrt{2}>5+\sqrt{1}=6$
$4+\sqrt{3}< 4+\sqrt{4}=6$
$\Rightarrow 5+\sqrt{2}>4+\sqrt{3}$
b.
$\sqrt{8}-\sqrt{2}=2\sqrt{2}-\sqrt{2}=\sqrt{2}$
$\sqrt{5}-\sqrt{3}=\frac{5-3}{\sqrt{5}+\sqrt{3}}=\frac{2}{\sqrt{5}+\sqrt{3}}< \frac{2}{\sqrt{2}}=\sqrt{2}$
Vậy $\sqrt{8}-\sqrt{2}>\sqrt{5}-\sqrt{2}$
a) \(9=6+3=6+\sqrt{9}\)
\(6+2\sqrt{2}=6+\sqrt{8}\)
\(\sqrt{8}< \sqrt{9}\) nên \(6+\sqrt{8}=6+2\sqrt{2}< 6+\sqrt{9}=9\)
b) \(\left(\sqrt{2}+\sqrt{3}\right)^2=5+2\sqrt{6}=5+\sqrt{24}\)
\(3^2=9=5+4=5+\sqrt{16}\)
\(\sqrt{16}< \sqrt{24}\Rightarrow3^2< \left(\sqrt{2}+\sqrt{3}\right)^2\Rightarrow3< \sqrt{2}+\sqrt{3}\)
c) \(9+4\sqrt{5}=\left(2+\sqrt{5}\right)^2\)
\(16=\left(2+2\right)^2=\left(2+\sqrt{4}\right)^2\)
\(\sqrt{4}< \sqrt{5}\Rightarrow2+\sqrt{4}< 2+\sqrt{5}\Rightarrow\left(2+\sqrt{4}\right)^2=16< \left(2+\sqrt{5}\right)^2=9+4\sqrt{5}\)
d) \(\left(\sqrt{11}-\sqrt{3}\right)^2=14-2\sqrt{33}=14-\sqrt{132}\)
\(2^2=14-10=14-\sqrt{100}\)
\(\sqrt{100}< \sqrt{132}\Leftrightarrow-\sqrt{100}>-\sqrt{132}\Leftrightarrow14-\sqrt{100}>14-\sqrt{132}\)
\(\Rightarrow2>\sqrt{11}-\sqrt{3}\)
Ta có : \(a)\)\(6+2\sqrt{2}\) và 9
\(\Rightarrow9-6-2\sqrt{2}=3-2\sqrt{2}\)
\(=2-2\sqrt{2}+1\)
\(=(\sqrt{2}-1)^2>0\)
\(\Rightarrow9-6-2\sqrt{2}>0\Rightarrow9>6+2\sqrt{2}\)
\(b)\sqrt{2}+\sqrt{3}\)và 3
\(\Rightarrow\sqrt{[(\sqrt{2}+\sqrt{3})}^2]\)
\(=\sqrt{(5+2\sqrt{6}})\)
\(=\sqrt{(5+\sqrt{24}})=3=\sqrt{9}=\sqrt{(5+\sqrt{16})}\)
\(=\sqrt{(5+24)}>\sqrt{(5+16)}\Rightarrow\sqrt{2+\sqrt{3}}>3\)
\(c)\sqrt{11}-\sqrt{3}\)và 2
\(=\sqrt{11}-\sqrt{3}=\sqrt{[(\sqrt{11}-\sqrt{3}})^2=\sqrt{(14-2\sqrt{33})}\); \(2=\sqrt{4}=\sqrt{(14-10)}=\sqrt{(14-2\sqrt{25})}\Rightarrow\sqrt{(14-2\sqrt{33})}< \sqrt{(14-2\sqrt{25})}\)
\(\Rightarrow\sqrt{11}-\sqrt{3}< 2\)
Chúc bạn học tốt~
a) \(6+2\sqrt{2}=6+\sqrt{2^2.2}=6+\sqrt{8}\)
\(9=6+3=6+\sqrt{9}\)
Ta có: \(\sqrt{9}>\sqrt{8}\)
\(\Rightarrow6+\sqrt{3}>6+\sqrt{8}\)
\(\Rightarrow9>6+2\sqrt{2}\)
b) \(\left(\sqrt{2}+\sqrt{3}\right)^2=2+2.\sqrt{2}.\sqrt{3}+3=5+2.\sqrt{6}=5+\sqrt{2^2.6}=5+\sqrt{24}\)
\(3^2=9=5+4=5+\sqrt{16}\)
Ta có: \(\sqrt{24}>\sqrt{16}\)
\(\Rightarrow5+\sqrt{24}>5+\sqrt{16}\)
\(\Rightarrow\left(\sqrt{2}+\sqrt{3}\right)^2>3^2\)
\(\Rightarrow\sqrt{2}+\sqrt{3}>3\)
c) làm tương tự như câu c
mk ms học lớp 7 nên có gì sai sót thì bỏ qua nha