Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : \(\left(-\frac{1}{2}\right)^{500}=\left[\left(-\frac{1}{2}\right)^5\right]^{100}=\left(-\frac{1}{32}\right)^{100}\)
=> \(\left(-\frac{1}{16}\right)^{100}< \left(-\frac{1}{32}\right)^{100}\)
<=> \(\left(-\frac{1}{16}\right)^{100}< \left(-\frac{1}{2}\right)^{500}\)
câu b cũng tương tự nha tất cả đưa về cơ số là -2
a) Chỉ cần so sánh \(\left(\frac{1}{16}\right)^{100}\)và \(\left(\frac{1}{2}\right)^{500}\)
Cách 1 : \(\left(\frac{1}{16}\right)^{100}\)= \(\left(\frac{1}{2}\right)^{400}>\left(\frac{1}{2}\right)^{500}\)
Cách 2 : \(\left(\frac{1}{16}\right)^{100}>\left(\frac{1}{32}\right)^{100}=\left(\frac{1}{2}\right)^{500}\)
b) Trước hết ta so sánh : 329 và 1813
Ta có : 329 < 245 < 252 = 1613 < 1813
Vậy -329 > -1813 tức là ( -32)9 > ( -18)13
Toán 6 ?
Ta có :
\(\left(-\frac{1}{16}\right)^{100}=\left(\frac{1}{16}\right)^{100}=\frac{1}{16^{100}}\)
\(\left(-\frac{1}{2}\right)^{500}=\left(\frac{1}{2}\right)^{500}=\frac{1}{2^{500}}=\frac{1}{\left(2^4\right)^{125}}=\frac{1}{16^{125}}\)
Do \(\frac{1}{16^{100}}>\frac{1}{16^{125}}\left(16^{100}< 16^{125}\right)\)
\(\Rightarrow\left(-\frac{1}{16}\right)^{100}>\left(-\frac{1}{.2}\right)^{500}\)
Vậy ...
a) \(\left(-\frac{1}{2}\right)^{500}=\left[\left(-\frac{1}{2}^5\right)^{100}\right]=\left(\frac{-1}{32}\right)^{100}\)
Vì \(\left(-\frac{1}{16}\right)^{100}\) > \(\left(\frac{-1}{32}\right)^{100}\) nên \(\left(-\frac{1}{16}\right)^{100}>\left(-\frac{1}{2}\right)^{500}\)
b) Câu này mk ko bt
Bạn thông cảm
b, Bài giải
\(\left(-32\right)^9=\left(-16\cdot2\right)^9=\left(-16\right)^9\cdot2^9\)
\(\left(-16\right)^{13}=\left(-16\right)^9\cdot\left(-16\right)^4=\left(-16\right)^9\cdot\left[\left(-2\right)^4\right]^4=\left(-16\right)^9\cdot\left(-2\right)^{16}=\left(-16\right)^9\cdot2^{16}\)
Vì \(2^9< 2^{16}\) nên \(\left(-32\right)^9>\left(-16\right)^{13}\)
\(\left(-32\right)^9=-\left(2^5\right)^9=-\left(2^{45}\right)\)
\(\left(-16\right)^{13}=-\left(2^4\right)^{13}=-\left(2^{52}\right)\)
vì -2^45>-2^52hay -16^13>-32^9
a) Vì \(\dfrac{1}{24}< \dfrac{1}{83}\)
⇒ \(\dfrac{1}{24^9}>\dfrac{1}{83^{13}}\)
a) \(\left(\dfrac{1}{24}\right)^9>\left(\dfrac{1}{27}\right)^9=\dfrac{1}{3^{27}}\)
\(\left(\dfrac{1}{83}\right)^{13}< \left(\dfrac{1}{81}\right)^{13}=\dfrac{1}{3^{52}}\)
Mà \(\dfrac{1}{3^{27}}>\dfrac{1}{3^{52}}\)
\(\Rightarrow\left(\dfrac{1}{24}\right)^9>\left(\dfrac{1}{83}\right)^{13}\)
b) \(3^{300}=\left(3^3\right)^{100}=27^{100}\)
\(5^{199}< 5^{200}=\left(5^2\right)^{100}=25^{100}\)
Mà \(25^{100}< 27^{100}\)
\(\Rightarrow5^{199}< 3^{300}\)
\(\Rightarrow\dfrac{1}{5^{199}}>\dfrac{1}{3^{300}}\)
\(a)32^9=(2\cdot5)^9=2^{45}=(2^3)^{15}=8^{15}=8^{13}\cdot8^2=8^{13}\cdot2^6\)
\(18^{13}=(9\cdot2)^{13}=9^{13}\cdot2^{13}\)
Vì 913 > 813
213 > 26
=> \(32^9< 18^{13}\)
=> \((-32)^9>(-18)^{13}\)
Còn bài b tự xử
Học tốt
Ta có 3^21 = 3 * 9^10 > 3 * 8 ^10 > 2*8^10 = 2*2^30 = 2^31
Ta có 2^300 = 8^100 < 9 ^100 = 3^200
Ta có 32^9 = 2^45 và 18^13 = 2^13 * 3^26 bây giờ ta sẽ so sánh 3^26 với 2^32
ta thấy 3^26 = 9^13 > 8 ^13 = 2^39 > 2^32 => 3^26 > 2^32 <=> 3 ^26 * 2^13 > 2^32*13 <=> 18^13 > 2^45 = 32^9
Ta có 18^13 = 2^13 * 3^26 ta sẽ so sánh 2^13 với 3^8
ta thấy 3^8 = 6561 < 8192 = 2^13 nên 18^13 > 3^34