Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)
\(3A-A=\left(1+\frac{1}{3}+...+\frac{1}{3^{99}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\right)\)
\(2A=1-\frac{1}{3^{100}}\)
\(\Rightarrow2A< 1\)
\(\Rightarrow A< \frac{1}{2}\)
Ta có: \(3\cdot A=1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\)
Do đó:
\(3\cdot A-A=1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}-\dfrac{1}{3}-\dfrac{1}{3^2}-...-\dfrac{1}{3^{100}}\)
hay \(2\cdot A=1-\dfrac{1}{3^{100}}\)
\(\Leftrightarrow A=\left(1-\dfrac{1}{3^{100}}\right):2\)
\(\Leftrightarrow A=\left(1-\dfrac{1}{3^{100}}\right)\cdot\dfrac{1}{2}\)
\(\Leftrightarrow A=\dfrac{1}{2}-\dfrac{1}{2\cdot3^{100}}< \dfrac{1}{2}\)
hay A<B
ta có: \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}+\frac{1}{3^{100}}\)
\(\Rightarrow\frac{1}{3}A=\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{100}}+\frac{1}{3^{101}}\)
\(\Rightarrow A-\frac{1}{3}A=\frac{1}{3}-\frac{1}{3^{101}}< \frac{1}{3}\)
\(\Rightarrow\frac{2}{3}A< \frac{1}{3}\)
\(\Rightarrow A< \frac{1}{3}:\frac{2}{3}\)
\(\Rightarrow A< \frac{1}{2}\)
Cho \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}};B=\frac{1}{2}\).so sánh A và B
P = 1 + 32 + 34 + 36+......+3100
32 P= 32(1 + 32 + 34 + 36+......+3100)
32P= 32 + 34 + 36+......+3100+3102
32P= (32 + 34 + 36+......+3100+3102)- (1 + 32 + 34 + 36+......+3100 )
32 P= 3102 - 1
P= (3102 -1) :9
Q = (917)3 / 23
Q = 951 / 8
Q = (32)51 /8
Q = 3102 /8
Q= 3102 :8
=> P > Q
Vậy...
K chắc nha b
xét P=1+3^2+3^4+3^6+3^8+....+3^100
=> 3^2.P=3^2+3^4+3^6+3^8+3^10+...+3^102
9.P-P=(3^2+3^4+3^6+3^8+3^10+...+3^102)-(1+3^2+3^4+3^6+3^8+....+3^100)
8P=3^102-1
P=\(\frac{3^{102}-1}{8}\)
Xét Q :
\(\left(\frac{9^{17}}{2}\right)^3=\left[\frac{\left(3^2\right)^{17}}{2}\right]^3=\frac{\left(3^{34}\right)^3}{8}=\frac{3^{102}}{8}\)
mà 3^102-1<3^102
=>P<Q
Ta có:
\(3D=1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}\)
\(3D-D=\left(1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}\right)\)
\(2D=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\frac{1}{3^{100}}\)
Đặt \(E=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)
\(3E=3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)
\(3E-E=\left(3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)
\(2E=3-\frac{1}{3^{99}}< 3\)
\(E< \frac{3}{2}\)
\(2D< \frac{3}{2}-\frac{1}{3^{100}}< \frac{3}{2}\)
\(D< \frac{3}{4}\)
Vậy...