K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2016

ta có \(\sqrt{2000}-\sqrt{1999}=\frac{1}{\sqrt{2000}+\sqrt{1999}}\)

\(\sqrt{2001}-\sqrt{2000}=\frac{1}{\sqrt{2001}+\sqrt{2000}}\)

\(\frac{1}{\sqrt{2000}+\sqrt{1999}}>\frac{1}{\sqrt{2001}+\sqrt{2000}}\)\(\sqrt{2000}-\sqrt{1999}>\sqrt{2001}-\sqrt{2000}\)

13 tháng 7 2016

s hk có đề

24 tháng 7 2016

xin lỗi bạn,mình mới lớp 6 nên ko làm đc.

21 tháng 8 2016

Anh à, bài toán này em nghĩ anh nên đăng trên h thì sẽ được giải đáp tốt hơn đó. Xin lỗi, em mới học lớp 7.

12 tháng 7 2016

Hic... thông cảm đi, đây chưa học bn ạ, chứ giúp đc mk giúp òi khocroi

12 tháng 7 2016

hay

 

26 tháng 7 2018

Ta có :

\(A=\dfrac{\left(\sqrt{2000}-\sqrt{1999}\right)\left(\sqrt{2000}+\sqrt{1999}\right)}{\left(\sqrt{2000}+\sqrt{1999}\right)}=\dfrac{1}{\sqrt{2000}+\sqrt{1999}}\)

\(B=\dfrac{\left(\sqrt{2001}-\sqrt{2000}\right)\left(\sqrt{2001}+\sqrt{2000}\right)}{\left(\sqrt{2001}+\sqrt{2000}\right)}=\dfrac{1}{\sqrt{2001}+\sqrt{2000}}\)

Do \(\sqrt{2000}+\sqrt{1999}< \sqrt{2001}+\sqrt{2000}\)

\(\Rightarrow A>B.\)

26 tháng 7 2018

Bài làm:

Theo máy tính Vinacal 570ES PLUS II, ta có:

A>B

Đọc tiếp...

12 tháng 6 2016

Ta sẽ chứng minh bất đẳng thức sau : \(\frac{\sqrt{a}+\sqrt{b}}{2}< \sqrt{\frac{a+b}{2}}\)

\(\left(\frac{\sqrt{a}+\sqrt{b}}{2}\right)^2< \frac{a+b}{2}\Leftrightarrow\frac{a+b+2\sqrt{ab}}{4}< \frac{a+b}{2}\Leftrightarrow a+b+2\sqrt{ab}< 2\left(a+b\right)\Leftrightarrow-\left(a-2\sqrt{ab}+b\right)< 0\Leftrightarrow-\left(\sqrt{a}-\sqrt{b}\right)^2< 0\)(luôn đúng)

Vậy bất đẳng thức được chứng minh.

Áp dụng : \(\frac{\sqrt{1998}+\sqrt{2000}}{2}< \sqrt{\frac{1998+2000}{2}}=\sqrt{1999}\)

\(\Rightarrow\sqrt{1998}+\sqrt{2000}< 2.\sqrt{1999}\)

12 tháng 6 2016

Phần chứng minh bất đẳng thức bạn ghi thêm điều kiện a,b > 0 nhé