Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(M=\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+....+\frac{1}{\sqrt{224}+\sqrt{225}}\)
\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{225}-\sqrt{224}\)
\(=-1+\sqrt{225}=-1+15=14\)
Và \(N=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{63}}\)
\(=14,47706...>14=M\)
So sánh:
\(a,\sqrt{25+9}\)và \(\sqrt{25}+\sqrt{9}\)
Ta có:
\(\sqrt{25+9}=\sqrt{34}< \sqrt{36}=6\) \(\left(1\right)\)
\(\sqrt{25}+\sqrt{9}=\sqrt{5^2}+\sqrt{3^2}=5+3=8\) \(\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\sqrt{25+9}< \sqrt{25}+\sqrt{9}\)
\(b,\sqrt{25-16}\) và \(\sqrt{25}-\sqrt{16}\)
Tương tự:)
a) HD: Thực hiện phép khai căn rồi so sánh kết quả.
Trả lời: > √25 - √16;.
b) HD: Ta có thể chứng minh rằng √a < + √b.
Nhưng điều này suy ra từ kết quả bài tập 26.b) SGK nếu lưu ý rằng
√a = .
a) Ta có:
\(\sqrt{25-16}=\sqrt{9}=3\);
\(\sqrt{25}-\sqrt{16}=5-4=1\).
Vì 1 < 3 nên \(\sqrt{25}-\sqrt{16}< \sqrt{25-16}\).
b) Ta có:
\(\sqrt{a}=\sqrt{a-b+b}=\sqrt{(a-b)+b}\)
mà ta đã biết:
\(\sqrt{(a-b)+b}< \sqrt{a-b}+\sqrt{b}\)
\(\Leftrightarrow\sqrt{a}< \sqrt{a-b}+\sqrt{b}\)
\(\Leftrightarrow\sqrt{a}-\sqrt{b}< \sqrt{a-b}\)
Vậy \(\sqrt{a}-\sqrt{b}< \sqrt{a-b}\).
a, Ta có \(\sqrt{25-16}=\sqrt{9}=3\)
\(\sqrt{25}-\sqrt{16}=5-4=1\)
Do 3 > 1 nên \(\sqrt{25-16}>\sqrt{25}-\sqrt{16}\)
a) căn 25 - 16 > căn 25 - căn 16
b)Với nên đều xác định
Để so sánh và ta quy về so sánh và .
+) .
+)
.
Do nên
Do
(đpcm)
Vậy .
Ta có: \(\sqrt{16+225}=\sqrt{241}< \sqrt{361}=19=4+15=\sqrt{16}+\sqrt{225}\)
Vậy \(\sqrt{16+225}< \sqrt{16}+\sqrt{225}\)
Ta có:\(\sqrt{16+225}\) =\(\sqrt{241}\) \(\approx15,5241\)
\(\sqrt{16}+\sqrt{225}=4+15=19\)
15,5241<19
hay \(\sqrt{16+225}< \sqrt{16}+\sqrt{225}\)
Vậy \(\sqrt{16+225}< \sqrt{16}+\sqrt{225}\)