Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
23/33+2223/3333+222223/333333 > 2 nha
Vì 23/33+2223/3333+222223/333333 bằng 2.03060606 nha
TL
a, 100005175327
b, 148904438
c, 10746660
HT
Mình mất 5 phút để giải, bạn mất 1 giây để t.i.c.k, nhớ t.i.c.k mình nhá
bài 2
a] = 3 x \(\frac{4343}{7171}\)= \(\frac{17372}{7171}\)= \(\frac{172}{71}\)
b] = \(\frac{1}{33}\)x \(\frac{44}{7}\)= \(\frac{1}{3}\)x \(\frac{4}{7}\)=\(\frac{4}{21}\)
bài 1
a] y là 9
b] <=> 64y + 36y = 700 - 75 - 225
<=> 100y = 400
<=> y = 4
trên lớp cô sửa rồi nên mình giải luôn:
1) Tìm y
a) y3 + 3y = 12 x 11
y3 + 3y = 132
y x 10 + 3 + 3 x 10 + y = 132
( y x 10 + y ) + ( 3 x 10 + 3 ) = 132
11 x y + 33 = 132
11 x y = 132 - 33
11 x y = 99
y = 99 : 11
y = 9
b) 64 x y + 225 = 700 - 75 - 36 x y
64 x y + 225 = 625 - 36 x y
64 x y + 36 x y = 625 -225
64 x y + 36 x y = 400
( 64 + 36 ) x y = 400
100 x y = 400
y = 400 : 100
y = 4
2) Tính
a) \(\frac{4343}{7171}+\frac{4343}{7171}+\frac{4343}{7171}+\frac{4343}{7171}\)
\(=\frac{4343}{7171}\times4\)
\(=\frac{43}{71}\times4\)
\(=\frac{172}{71}\)
b) A = \(\frac{1}{33}\times\left(\frac{33}{12}+\frac{3333}{2020}+\frac{333333}{303030}+\frac{33333333}{42424242}\right)\)
Ta có:
\(\frac{3333}{2020}=\frac{3333:101}{2020:101}=\frac{33}{20}\)
\(\frac{333333}{303030}=\frac{333333:10101}{303030:10101}=\frac{33}{30}\)
\(\frac{33333333}{42424242}=\frac{33333333:1010101}{42424242:1010101}=\frac{33}{42}\)
A = \(\frac{1}{33}\times\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)
A = \(\frac{1}{33}\times33\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\)
A = 1 x \(\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\)
A = 1 x \(\left(\frac{1}{3x4}+\frac{1}{4x5}+\frac{1}{5x6}+\frac{1}{6x7}\right)\)
A = 1 x \(\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
A = 1 x \(\left(\frac{1}{3}-\frac{1}{7}\right)\)
A = 1 x \(\left(\frac{7}{21}-\frac{3}{21}\right)\)
A = 1 x \(\frac{4}{21}\)
A = \(\frac{4}{21}\)
a, \(\frac{7}{4x}\left(\frac{33}{12}+\frac{3333}{2020}+\frac{333333}{303030}+\frac{33333333}{42424242}\right)=22\)
\(\frac{7}{4x}\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)=22\)
\(\frac{7}{4x}\left[33.\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\right]=22\)
\(\frac{7}{4x}\left[33.\left(\frac{35}{420}+\frac{21}{420}+\frac{14}{420}+\frac{10}{420}\right)\right]=22\)
\(\frac{7}{4x}\left[33.\frac{4}{21}\right]=22\)
\(\frac{7}{4x}.\frac{44}{7}\)=22
\(\frac{11}{x}=22\)
x=11:22
x=\(\frac{1}{2}\)
b,\(\left(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\right).x=1\)
Đặt A\(=\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\)
Ta có :\(A=\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\)
\(\Rightarrow4A=4.\left(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\right)\)
\(\Rightarrow4A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}=\frac{32}{64}+\frac{16}{64}+\frac{8}{64}+\frac{4}{64}+\frac{2}{64}+\frac{1}{64}\)
\(\Rightarrow4A=\frac{32+16+8+4+2+1}{64}=\frac{63}{64}\)
\(\Rightarrow A=\frac{63}{64}:4=\frac{63}{256}\)
\(\Rightarrow\frac{63}{256}.x=1\)
\(\Leftrightarrow x=1:\frac{63}{256}=\frac{256}{63}\)
=3\(\dfrac{3}{4}\)+3+1
=7\(\dfrac{3}{4}\)
Mà 7>2⇒3\(\dfrac{6}{8}\)+3\(\dfrac{2}{2}\)>2
32 + 33 + 32 + 33 + 32 + 33 + 332 + 333 + 332+ 333 + 3332 + 3333 = 8190