Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(b)\) Ta có công thức :
\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(a,b,c\inℕ^∗\right)\)
Áp dụng vào ta có :
\(\frac{2009^{2010}-2}{2009^{2011}-2}< \frac{2009^{2010}-2+2011}{2009^{2011}-2+2011}=\frac{2009^{2010}+2009}{2009^{2011}+2009}=\frac{2009\left(2009^{2009}+1\right)}{2009\left(2009^{2010}+1\right)}=\frac{2009^{2009}+1}{2009^{2010}+1}\)
Vậy \(\frac{2009^{2009}+1}{2009^{2010}+1}>\frac{2009^{1010}-2}{2009^{2011}-2}\)
Chúc bạn học tốt ~
Àk mình còn thiếu một điều kiện nữa xin lỗi nhé :
Ta có công thức :
\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\)
Bạn thêm vào nhé
Ta có: \(\frac{1}{1+\frac{2010}{2011}+\frac{2010}{2012}}+\frac{1}{1+\frac{2011}{2010}+\frac{2011}{2012}}+\frac{1}{1+\frac{2012}{2011}+\frac{2012}{2010}}\)
\(=\frac{1}{2010\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}\right)}+\frac{1}{2011\left(\frac{1}{2011}+\frac{1}{2010}+\frac{1}{2012}\right)}+\frac{1}{2012\left(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}\right)}\)
\(=\frac{\frac{1}{2010}}{\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}}+\frac{\frac{1}{2011}}{\frac{1}{2011}+\frac{1}{2010}+\frac{1}{2012}}+\frac{\frac{1}{2012}}{\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}}\)
\(=\frac{\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}}{\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}}=1\)
Mà \(\frac{2016}{2017}< 1\)
Vậy \(\frac{1}{1+\frac{2010}{2011}+\frac{2010}{2012}}+\frac{1}{1+\frac{2011}{2010}+\frac{2011}{2012}}+\frac{1}{1+\frac{2012}{2010}+\frac{2012}{2011}}>\frac{2016}{2017}\)
dấu cần điền là : >
Vì kết quả của phép tính vế thứ 1 là 1
và phân số 2016/2017 bé hơn 1 nên ta điền dấu lớn
\(\frac{2010}{2011}\)> \(\frac{2010}{2011+2012+2013}\)
\(\frac{2011}{2012}\)> \(\frac{2011}{2011+2012+2013}\)
\(\frac{2012}{2013}\)> \(\frac{2012}{2011+2012+2013}\)
=> \(\frac{2010}{2011}\)+ \(\frac{2011}{2012}\)+ \(\frac{2012}{2013}\)> \(\frac{2010+2011+2012}{2011+2012+2013}\)
=> P > Q
\(P=\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}\)
\(\Rightarrow P>\frac{2012}{2013}+\frac{2012}{2013}+\frac{2012}{2013}\)
\(P>\frac{4036}{2013}>1\)(1)
\(Q=\frac{2010+2011+2012}{2011+2012+2013}=\frac{6033}{6036}< 1\)(2)
\(Q< 1;P>1\Rightarrow P>Q\)
Câu hỏi của Son Goku - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo bài bạn Huy nhé!
P = \(\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}\)
Q = \(\frac{2010+2011+2012}{2011+2012+2013}\) = \(\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)
Vì: \(\frac{2010}{2011}>\frac{2010}{2011+2012+2013}\)
\(\frac{2011}{2012}>\frac{2011}{2011+2012+2013}\)
\(\frac{2012}{2013}>\frac{2012}{2011+2012+2013}\)
=> \(\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}>\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)
P > Q
\(A=\left(1-\frac{1}{2010}\right)-\left(1-\frac{1}{2011}\right)+\left(1-\frac{1}{2012}\right)-\left(1-\frac{1}{2013}\right)=-\frac{1}{2010}+\frac{1}{2011}-\frac{1}{2012}+\frac{1}{2013}\)
\(A=-\frac{1}{2010.2011}-\frac{1}{2012.2013}\)
Vì 2010.2011 > 2009.2010 => \(\frac{1}{2010.2011}-\frac{1}{2009.2010}\)
\(-\frac{1}{2012.2013}>-\frac{1}{2011.2012}\)
=> A > B
bai thi .....................kho..........................kho..............troi.................thilanh.............................ret..................wa.........................dau................wa......................tich....................ung.....................ho.....................cho............do.................lanh
bai thi .....................kho..........................kho..............troi.................thilanh.............................ret..................wa.........................dau................wa......................tich....................ung.....................ho.....................cho............do.................lanh...............tho...................bang..................mom...................thi...................nhu..................hut.....................thuoc................la.................lanh wa
Ta có: \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2010^2}