K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2017

Ta có:

\(M=\left(\dfrac{9}{11}-0,81\right)^{2014}\)

\(=\left(\dfrac{9}{1100}\right)^{2014}\)

\(=\left(\dfrac{9}{11}.\dfrac{1}{100}\right)^{2014}\)

\(=\dfrac{9^{2014}}{11^{2014}}.\dfrac{1}{100^{2.2014}}\)

\(=\dfrac{9^{2014}}{11^{2014}}.\dfrac{1}{10^{2048}}\)

Vì: \(\dfrac{1}{10^{2048}}=\dfrac{1}{10^{2048}}\)

Nên: \(\dfrac{9^{2014}}{11^{2014}}.\dfrac{1}{10^{2048}}>\dfrac{1}{10^{2048}}\)

Hay: M>N

Vậy M>N

21 tháng 4 2017

\(\dfrac{9}{11}-0,81=\dfrac{9}{11}-\dfrac{81}{100}=\dfrac{81}{99}-\dfrac{81}{100}< \dfrac{81+1}{99+1}-\dfrac{81}{100}\)

\(=\dfrac{82}{100}-\dfrac{81}{100}=\dfrac{1}{100}\)

\(\Rightarrow\left(\dfrac{9}{11}-0,81\right)^{2014}< \left(\dfrac{1}{100}\right)^{2014}=\dfrac{1}{10^{4028}}\)

\(M< N\)

Vậy \(M< N\)

4 tháng 10 2017

Ta có: \(\left(\dfrac{9}{11}-0,81\right)^{2014}\)

\(=\left(\dfrac{9}{11}-\dfrac{81}{100}\right)^{2014}\)

\(=\left(\dfrac{900}{1100}-\dfrac{891}{1100}\right)^{2014}\)

\(=\left(\dfrac{9}{1100}\right)^{2014}\)

\(=\left(\dfrac{9}{11}.\dfrac{1}{100}\right)^{2014}\)

\(=\left(\dfrac{9}{11}\right)^{2014}.\dfrac{1}{10^{4028}}\)

\(=\left(\dfrac{9}{11}\right)^{2014}.N\)

\(\left(\dfrac{9}{11}\right)^{2014}< 1\) nên M < N

a: =>4x-6-9=5-3x-3

=>4x-15=-3x+2

=>7x=17

hay x=17/7

b: \(\Leftrightarrow\dfrac{2}{3x}-\dfrac{1}{4}=\dfrac{4}{5}-\dfrac{7}{x}+2\)

=>2/3x+21/3x=4/5+2+1/4=61/20

=>23/3x=61/20

=>3x=23:61/20=460/61

hay x=460/183

23 tháng 9 2021

\(B=\left(1-\dfrac{1}{4}\right)\left(1-\dfrac{1}{9}\right)\left(1-\dfrac{1}{16}\right)...\left(1-\dfrac{1}{81}\right)\left(1-\dfrac{1}{100}\right)\)

\(=\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}...\dfrac{99}{100}\)

\(=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}...\dfrac{9.11}{10.10}=\left(\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{9}{10}\right).\left(\dfrac{3}{2}.\dfrac{4}{3}...\dfrac{11}{10}\right)=\dfrac{1}{10}.\dfrac{11}{2}=\dfrac{11}{20}>\dfrac{11}{21}\)

23 tháng 9 2021

\(B=\left(1-\dfrac{1}{2}\right)\left(1+\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1+\dfrac{1}{3}\right)...\left(1-\dfrac{1}{9}\right)\left(1+\dfrac{1}{9}\right)\left(1-\dfrac{1}{10}\right)\left(1+\dfrac{1}{10}\right)\\ B=\left(\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{8}{9}\cdot\dfrac{9}{10}\right)\left(\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot\dfrac{5}{4}\cdot...\cdot\dfrac{10}{9}\cdot\dfrac{11}{10}\right)\\ B=\dfrac{1}{10}\cdot\dfrac{11}{2}=\dfrac{11}{20}>\dfrac{11}{21}\)

2 tháng 12 2016

Ta có:\(\left(\frac{9}{11}-0,81\right)^{2005}\)=\(\left(\frac{9}{11}-\frac{81}{100}\right)^{2005}=\left(\frac{9}{1100}\right)^{2005}< \left(\frac{10}{1100}\right)^{2005}=\left(\frac{1}{110}\right)^{2005}\)

\(\left(\frac{1}{110}\right)^{2005}< \left(\frac{1}{100}\right)^{2005}=\left[\left(\frac{1}{10}\right)^2\right]^{2005}=\left(\frac{1}{10}\right)^{4010}=\frac{1}{10^{4010}}\)

Vậy \(\left(\frac{9}{11}-0,81\right)^{2005}< \frac{1}{10^{4010}}\)

Đặt \(\dfrac{1}{5}+\dfrac{2013}{2014}+\dfrac{2015}{2016}=B;\dfrac{2013}{2014}+\dfrac{2015}{2016}+\dfrac{1}{10}=C\)

\(A=\left(B+1\right)\cdot C-B\cdot\left(C+1\right)\)

\(=BC+C-BC-B\)

=C-B

\(=\dfrac{2013}{2014}+\dfrac{2015}{2016}+\dfrac{1}{10}-\dfrac{1}{5}-\dfrac{2013}{2014}-\dfrac{2015}{2016}=-\dfrac{1}{10}\)