K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2019

Ta có: \(\sqrt{2}>1\)

\(\Rightarrow1+\sqrt{2}>1+1\)

\(\Rightarrow1+\sqrt{2}>2\)

Ta có:\(\sqrt{2}>\sqrt{1}\)

\(\Leftrightarrow1+\sqrt{2}>1+\sqrt{1}=2\)

26 tháng 12 2018

Giải sách bài tập Toán 7 | Giải sbt Toán 7

5 tháng 2 2016

Gọi 3 máy là a,b,c. Ta có:

a+b = 1 giờ 20 phút = 80 (phút)

b+c = 1 giờ 30 phút = 90 (phút)

a+c = 2 giờ 24 phút = 144 (phút)

mà a+b+b+c+a+c = 80+90+144 = 314 ( phút)

hay 2(a+b+c) = 314 => a+b+c = 314/2 = 157 

  • c = (a+b+c) - (a+b) = 157 - 80 = 77 (phút)
  • a = (a+b+c) - (b+c) = 157 - 90 = 67 (phút)
  • b = (a+b+c) - (a+c) = 157 - 144 = 13 (phút)
11 tháng 12 2019

\(12^8.9^{12}\)\(18^{18}.\)

Ta có:

\(12^8.9^{12}\)

\(=\left(2^2.3\right)^8.\left(3^2\right)^{12}\)

\(=2^{16}.3^8.3^{24}\)

\(=2^{16}.3^{32}\)

\(=2^{16}.\left(3^2\right)^{16}\)

\(=2^{16}.9^{16}\)

\(=\left(2.9\right)^{16}\)

\(=18^{16}.\)

\(18^{16}< 18^{18}.\)

\(\Rightarrow12^8.9^{12}< 18^{18}.\)

Chúc bạn học tốt!

5 tháng 11 2016

x+y =9,8 và x=-3,1

    -> y= 9,8 - (-3,1) =9,8+3,1

    -> 9,8 + 3,1 >0  

    -> y >0

   -> x < 0<y

5 tháng 11 2016

x < 0 ( vì x = -3,1)

Vì x + y = 9,8

x âm => y dương

=> y > 0 

tíc mình nha

22 tháng 6 2019

1.

Ta có 3223 > 3222 = (32)111 = 9111.                   (1)

2332 < 2333 = (23)111 = 8111.                              (2)

Từ (1) và (2) suy ra: 2332 < 8111 < 9111 < 3223.

Vậy 2332 < 3223

2.

Cách 1: 92000 = (32)2000 = 34000

Cách 2: 34000 = (34)1000 = 811000.              (1)

            92000 = (92)1000 = 811000.                 (2)

Từ (1) và (2) suy ra 34000 = 92000 .

3.

Đặt A = 22009 + 22008 + ... + 21 + 20

Ta có 2A = 22010 + 22009 + ... + 22 + 21.

Suy ra 2A - A = 22010 - 20 = 22010 - 1.

Do đó M = 22010 - A = 22010 - (22010 - 1) = 1.

  trả lời;

1)23322332 và 32233223

23322332 <23332333 mà 2333=(23)111=8111

32233223 >32223222 mà 3222=(32)111=9111

từ (1 và 2),suy ra:8111<9111 hay 2332<3223

13 tháng 3 2017

mk làm theo cách giải toán casio nhé, cách bấm nè

Int(2000x(Log2000))+1=6603

\(\Rightarrow2000^{2000}\)có 6603 chữ số

14 tháng 6 2018

Giải:

\(C=\left(1-\dfrac{2}{2.3}\right)\left(1-\dfrac{2}{3.4}\right)\left(1-\dfrac{2}{4.5}\right)...\left(1-\dfrac{2}{n\left(n+1\right)}\right)\)

Đk: \(n\ne0;n\ne-1\)

\(C=\left(1-\dfrac{2}{2.3}\right)\left(1-\dfrac{2}{3.4}\right)\left(1-\dfrac{2}{4.5}\right)...\left(1-\dfrac{2}{n\left(n+1\right)}\right)\)

\(\Leftrightarrow C=\left(\dfrac{2.3-2}{2.3}\right)\left(\dfrac{3.4-2}{3.4}\right)\left(\dfrac{4.5-2}{4.5}\right)...\left(\dfrac{n\left(n-1\right)-2}{n\left(n+1\right)}\right)\)

\(\Leftrightarrow C=\dfrac{4}{2.3}.\dfrac{10}{3.4}.\dfrac{18}{4.5}...\left(\dfrac{n\left(n-1\right)-2}{n\left(n+1\right)}\right)\)

\(\Leftrightarrow C=\dfrac{1.4}{2.3}.\dfrac{2.5}{3.4}.\dfrac{3.6}{4.5}...\left(\dfrac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\right)\)

\(\Leftrightarrow C=\dfrac{1.4.2.5.3.6...\left(n-1\right)\left(n+2\right)}{2.3.3.4.4.5.n\left(n+1\right)}\)

\(\Leftrightarrow C=\dfrac{\left[1.2.3...\left(n-1\right)\right]\left[4.5.6\left(n+2\right)\right]}{\left(2.3.4...n\right)\left[3.4.5....\left(n+1\right)\right]}\)

\(\Leftrightarrow C=\dfrac{n+2}{3n}\)

\(\dfrac{n+2}{3n}< \dfrac{2n+2}{3n}\)

\(\Leftrightarrow C< \dfrac{2n+2}{3n}\)

Vậy ...

14 tháng 6 2018

Giải:

\(C=\left(1-\dfrac{2}{2.3}\right)\left(1-\dfrac{2}{3.4}\right)\left(1-\dfrac{2}{4.5}\right)...\left(1-\dfrac{2}{n\left(n+1\right)}\right)\)

Đk: \(n\ne0;n\ne-1\)

\(C=\left(1-\dfrac{2}{2.3}\right)\left(1-\dfrac{2}{3.4}\right)\left(1-\dfrac{2}{4.5}\right)...\left(1-\dfrac{2}{n\left(n+1\right)}\right)\)

\(\Leftrightarrow C=\left(\dfrac{2.3-2}{2.3}\right)\left(\dfrac{3.4-2}{3.4}\right)\left(\dfrac{4.5-2}{4.5}\right)...\left(\dfrac{n\left(n-1\right)-2}{n\left(n+1\right)}\right)\)

\(\Leftrightarrow C=\dfrac{4}{2.3}.\dfrac{10}{3.4}.\dfrac{18}{4.5}...\left(\dfrac{n\left(n-1\right)-2}{n\left(n+1\right)}\right)\)

\(\Leftrightarrow C=\dfrac{1.4}{2.3}.\dfrac{2.5}{3.4}.\dfrac{3.6}{4.5}...\left(\dfrac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\right)\)

\(\Leftrightarrow C=\dfrac{1.4.2.5.3.6...\left(n-1\right)\left(n+2\right)}{2.3.3.4.4.5.n\left(n+1\right)}\)

\(\Leftrightarrow C=\dfrac{\left[1.2.3...\left(n-1\right)\right]\left[4.5.6\left(n+2\right)\right]}{\left(2.3.4...n\right)\left[3.4.5....\left(n+1\right)\right]}\)

\(\Leftrightarrow C=\dfrac{n+2}{3n}\)

\(\dfrac{n+2}{3n}< \dfrac{2n+2}{3n}\)

\(\Leftrightarrow C< \dfrac{2n+2}{3n}\)

Vậy ...