Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\frac{a}{b}=\frac{a.\left(b+2012\right)}{b.\left(b+2012\right)}=\frac{ab+a.2012}{b.\left(b+2012\right)}\)
\(\frac{a+2012}{b+2012}=\frac{b.\left(a+2012\right)}{b.\left(b+2012\right)}=\frac{ab+b.2012}{b.\left(b+2012\right)}\)
Vì a<0<b=>a<b=>a.2012<b.2012
=>\(\frac{ab+a.2012}{b.\left(b+2012\right)}
Ta có:
A=-2012/4025=>-2012/4025x2=-4024/4025
B=-1999/3997=>-1999/3997x2=-3998/3997
Ta có: 4024/4025<1<3998/3997
=>4024/4025<3998/3997
=>-4024/4025>-3998/3997
=>-2012/4025>-1999/3997
a: 2010/2011=1-1/2011
2011/2012=1-1/2012
mà -1/2011>-1/2012
nên 2010/2011>2011/2012
b: \(\dfrac{2010}{2011}< 1< \dfrac{2001}{2000}\)
nên -2010/2011>-2001/2000
x^2+7x+2 chia hết cho x+7
x(x+7)+2 chia hết cho x+7
Vì x+7 chia hết cho x+7 nên x(x+7) chia hết cho x+7
=>2 chia hết cho x+7
hay x+7EƯ(2)={1;-1;2;-2}
=>xE{-6;-8;-5;-9}
Vậy để (x^2+7x+2) chia hết cho x+7 thì xE{-9;-8;-6;-5}