Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có :
a = \(\left(2^3\right)^{21}:2^{28}=2^{63}:2^{28}=2^{35}=2^{7.5}=\left(2^5\right)^7=32^7\)
b = \(\frac{6^{21}}{2^{21}}=\frac{\left(2.3\right)^{21}}{2^{21}}=\frac{2^{21}.3^{21}}{2^{21}}=3^{21}=3^{7.3}=\left(3^3\right)^7=27^7\)
vì 32 > 27 nên 327>277
Vậy a > b
a=(23)21 :228=263:228=235
b=321
a:b=235:321=221x214:321=2/321x214=2/314x2/37x214=4/314x2/37=4/37x4/37x2/37=27x4/37>1
Vậy a>b
nhớ tick cho mk nha:
Ta có: a = \(8^{21}\) :\(2^{28}\) = (\(2^3\) )\(^{21}\) : 2\(^{28}\) = \(2^{63}\) : \(2^{28}\) = \(2^{35}\)
b = \(6^{21}\) : \(2^{21}\) = \(3^{21}\)
Ta so sánh : \(2^{35}\) và \(3^{21}\)
\(\Leftrightarrow\) (\(2^5\) )\(^7\) và (\(3^3\) )\(^7\)
\(\Leftrightarrow\) \(35^7\) và \(27^7\)
Vì \(35^7>27^7\) nên \(32^7>27^7\).
Vậy a > b. chúc bn hc tốt.!!
Ta dễ dàng nhận thấy :
\(1^2>0;3^2>2^2;5^2>4^2;...;21^2>20^2\)
Cộng theo vế ta được :
\(1^2+3^2+5^2+...+21^2>0+2^2+4^2+...+20^2\)
Hay \(A>B\)
Ta có:A có số số hạng là:(21-1):2+1=11(số số hạng)
B có số số hạng là:(20-2):2+1=10(số số hạng)
Khi đó ta có:\(B-A=\left(2^2+4^2+...+20^2\right)-\left(1^2+3^2+...+21^2\right)\)
\(=\left(2^2-1^2\right)+\left(4^2-3^2\right)+...+\left(20^2-19^2\right)-21^2\)
\(=\left(1+2\right)\left(2-1\right)+\left(3+4\right)\left(4-3\right)+...+\left(19+20\right)\left(20-19\right)-21^2\)
\(=1+2+3+4+...+19+20-21^2=\frac{\left(1+20\right)20}{2}-21^2=21.10-21^2< 21^2-21^2=0\)
\(\Rightarrow B-A< 0\Rightarrow B< A\)
Vậy B<A
a) \(\sqrt{3}+5=\sqrt{3}+\sqrt{25}>\sqrt{2}+\sqrt{11}\)
b) \(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)
c) \(4+\sqrt{33}=\sqrt{16}+\sqrt{33}>\sqrt{29}+\sqrt{14}\)
d) \(\sqrt{48}+\sqrt{120}< \sqrt{49}+\sqrt{121}=7+11=18\)
a) => \(\left(\frac{1}{3}-\frac{5}{6}x\right)^3=\frac{5}{6}-\frac{21}{54}=\frac{24}{54}=\frac{4}{9}\)
=> \(\frac{1}{3}-\frac{5}{6}x=\sqrt[3]{\frac{4}{9}}\) => \(\frac{5}{6}x=\frac{1}{3}-\sqrt[3]{\frac{4}{9}}\) => \(x=\frac{6}{5}.\left(\frac{1}{3}-\sqrt[3]{\frac{4}{9}}\right)\)
b) \(\frac{1}{3}\left(\frac{1}{2}x-1\right)^4=\frac{1}{12}-\frac{1}{16}=\frac{1}{48}\) => \(\left(\frac{1}{2}x-1\right)^4=\frac{3}{48}=\frac{1}{16}\)
=> \(\frac{1}{2}x-1=\frac{1}{2}\) hoặc \(\frac{1}{2}x-1=-\frac{1}{2}\)
=> \(\frac{1}{2}x=\frac{3}{2}\) hoặc \(\frac{1}{2}x=\frac{1}{2}\) => x = 3 hoặc x = 1
c) \(\left(1+5\right).\left(\frac{3}{5}\right)^{x-1}=\frac{54}{25}\) => \(\left(\frac{3}{5}\right)^{x-1}=\frac{9}{25}=\left(\frac{3}{5}\right)^2\)
=> x - 1= 2 => x = 3
d) \(\left(1+\left(\frac{2}{3}\right)^2\right).\left(\frac{2}{3}\right)^x=\frac{101}{243}\) => \(\frac{13}{9}.\left(\frac{2}{3}\right)^x=\frac{101}{243}\)
=> \(\left(\frac{2}{3}\right)^x=\frac{101}{243}:\frac{13}{9}=\frac{101}{351}\) (có lẽ đề sai)
2) \(\frac{1}{27^{11}}=\frac{1}{\left(3^3\right)^{11}}=\frac{1}{3^{33}}\); \(\frac{1}{81^8}=\frac{1}{\left(3^4\right)^8}=\frac{1}{3^{32}}\)
Vì 333 > 332 => \(\frac{1}{3^{33}}\) < \(\frac{1}{3^{32}}\) => \(\frac{1}{27^{11}}\) < \(\frac{1}{81^8}\)
b) \(\frac{1}{3^{99}}=\frac{1}{\left(3^3\right)^{33}}=\frac{1}{27^{33}}
\(a,\left(\sqrt{2}+\sqrt{11}\right)^2=12+2\sqrt{22}\\ \left(\sqrt{3}+5\right)^2=28+10\sqrt{3}\)
Ta thấy \(12< 28;2\sqrt{22}=\sqrt{88}< \sqrt{300}=10\sqrt{3}\)
Nên \(\sqrt{2}+\sqrt{11}< \sqrt{3}+5\)
\(b,\left(\sqrt{21}-\sqrt{5}\right)^2=26-2\sqrt{105}\\ \left(\sqrt{20}-\sqrt{6}\right)^2=26-2\sqrt{120}\)
Vì \(\sqrt{105}< \sqrt{120}\Rightarrow-2\sqrt{105}>-2\sqrt{120}\)
Nên \(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)