K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2017

ta xét \(\frac{2016}{2017}+\frac{2017}{2018}=\frac{2016.2018}{2017.2018}+\frac{2017.2017}{2017.2018}\)

\(=\frac{2016.2018+2017.2017}{2017.2018}\)

Ta thấy \(2016+2017< 2016.2018+2017.2017\)

và \(2017+2018< 2017.2018\)

\(\Rightarrow\frac{2016+2017}{2017+2017}< \frac{2016}{2017}+\frac{2017}{2018}\)

28 tháng 9 2017

lấy 2016+2017/2017+2018-2016/2017+2017/2018=0.(9)==>2016+2017/2017+2018>2016/2017+2017/2018

7 tháng 11 2017

Trước tiên để tính diện tích hình thang chúng ta có công thức Chiều cao nhân với trung bình cộng hai cạnh đáy.
cach tinh dien h hinh thang vuong can khi biet do dai 4 canh cong thuc tinh 2
S = h * (a+b)1/2
Trong đó
a: Cạnh đáy 1
b: Cạnh đáy 2
h: Chiều cao hạ từ cạnh đấy a xuống b hoặc ngược lại(khoảng cách giữa 2 cạnh đáy)
Ví dụ: giả sử ta có hình thang ABCD với các cạnh AB = 8, cạnh đáy CD = 13, chiều cao giữa 2 cạnh đáy là 7 thì chúng ta sẽ có phép tính diện tích hình thang là:
S(ABCD) = 7 * (8+13)/2 = 73.5
cach tinh dien h hinh thang vuong can khi biet do dai 4 canh cong thuc tinh 3
Tương tự với trường hợp hình thang vuông có chiều cao AC = 8, cạnh AB = 10.9, cạnh CD = 13, chúng ta cũng tính như sau:
S(ABCD) = AC * (AB + CD)/2 = 8 * (10.9 + 13)/2 = 95.6

6 tháng 1 2019

\(A=\frac{2014}{2015}-\frac{2015}{2016}+\frac{2016}{2017}-\frac{2017}{2018}=\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2017}-\frac{1}{2018}\)

\(\Rightarrow A>0;B=\frac{1}{2015}-\frac{1}{2014}+\frac{1}{2017}-\frac{1}{2016}\)

\(\Rightarrow B< 0\Rightarrow B< 0< A\Rightarrow A>B\)

27 tháng 6 2019

\(A=\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}\)

\(\Rightarrow A=(1-\frac{1}{2017})+(1-\frac{1}{2018})+(1-\frac{1}{2019})\)

\(\Rightarrow A=3-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)\)

\(\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)\)<\(\frac{3}{2017}\)<\(1\)

\(\Rightarrow A\)>\(3-1=2\)

\(B=\frac{2016+2017+2018}{2017+2018+2019}\)

\(\Rightarrow B=1-\frac{3}{6054}\)

\(\Rightarrow B=1-\frac{1}{2018}\)

\(B\)<\(1\);\(A\)>\(2\)

\(\Rightarrow A\)>\(B\)

20 tháng 6 2018

a) ta có: \(1-\frac{2016}{2017}=\frac{1}{2017}\)

\(1-\frac{2017}{2018}=\frac{1}{2018}\)

\(\Rightarrow\frac{1}{2017}>\frac{1}{2018}\Rightarrow1-\frac{2016}{2017}>1-\frac{2017}{2018}\Rightarrow\frac{2016}{2017}< \frac{2017}{2018}\)

b) ta có: \(\frac{2017}{2016}-1=\frac{1}{2016};\frac{2018}{2017}-1=\frac{1}{2017}\)

\(\Rightarrow\frac{1}{2016}>\frac{1}{2017}\Rightarrow\frac{2017}{2016}-1>\frac{2018}{2017}-1\Rightarrow\frac{2017}{2016}>\frac{2018}{2017}\)

20 tháng 6 2018

Tru 1 moi phan so roi so sanh nha 'O_O"

1 tháng 11 2019

Ta có:

\(\Rightarrow A=B.\)

\(\Rightarrow A^{2017}=B^{2017}\)

\(\Rightarrow\left(A^{2017}-B^{2017}\right)^{2018}=\left(B^{2017}-B^{2017}\right)^{2018}=0^{2018}=0.\)

Vậy \(\left(A^{2017}-B^{2017}\right)^{2018}=0.\)

Chúc bạn học tốt!

5 tháng 7 2016

Ta có:

\(\frac{-2015}{-2016}=\frac{2015}{2016};\frac{-2016}{-2017}=\frac{2016}{2017}\)

\(\frac{2015}{2016}=1-\frac{1}{2016}\);\(\frac{2016}{2017}=1-\frac{1}{2017}\)

Có \(\frac{1}{2016}>\frac{1}{2017}\Rightarrow1-\frac{1}{2016}< 1-\frac{1}{2017}\Rightarrow\frac{-2015}{-2016}< \frac{-2016}{-2017}\)

TA ĐA

a) \(\frac{x+2015}{5}+\frac{x+2016}{4}=\frac{x+2017}{3}+\frac{x+2018}{2}\)

\(\Leftrightarrow\frac{x+2015}{5}+\frac{5}{5}+\frac{x+2016}{4}+\frac{4}{4}=\frac{x+2017}{3}+\frac{3}{3}+\frac{x+2018}{2}+\frac{2}{2}\)

\(\Leftrightarrow\frac{x+2020}{5}+\frac{x+2020}{4}=\frac{x+2020}{3}+\frac{x+2002}{2}\)

\(\frac{x+2020}{5}+\frac{x+2020}{4}-\frac{x+2020}{3}-\frac{x+2020}{2}=0\)

\(\Leftrightarrow\left(x+2020\right).\left(\frac{1}{5}+\frac{1}{4}-\frac{1}{3}-\frac{1}{2}\right)=0\)

\(\Leftrightarrow x+2020=0\)

\(\Leftrightarrow x=-2020\)

Vậy : \(x=-2020\)

Chúc bạn học tốt !!

13 tháng 8 2019

a) \(\frac{x+2015}{5}+\frac{x+2016}{4}=\frac{x+2017}{3}+\frac{x+2018}{2}\\ \left(\frac{x+2015}{5}+1\right)+\left(\frac{x+2016}{4}+1\right)=\left(\frac{x+2017}{3}+1\right)+\left(\frac{x+2018}{2}+1\right)\\ \frac{x+2020}{5}+\frac{x+2020}{4}=\frac{x+2020}{3}+\frac{x+2020}{2}\\ \frac{x+2020}{5}+\frac{x+2020}{4}-\frac{x+2020}{3}-\frac{x+2020}{2}=0\\ \left(x+2020\right)\left(\frac{1}{5}+\frac{1}{4}-\frac{1}{3}-\frac{1}{2}\right)=0\\ \Rightarrow x+2020=0\\ \Rightarrow x=-2020\)

Vậy x = -2020

b) \(\frac{x+2015}{5}+\frac{x+2016}{6}=\frac{x+2017}{7}+\frac{x+2018}{8}\\ \left(\frac{x+2015}{5}-1\right)+\left(\frac{x+2016}{6}-1\right)=\left(\frac{x+2017}{7}-1\right)+\left(\frac{x+2018}{8}-1\right)\\ \frac{x+2010}{5}+\frac{x+2010}{6}=\frac{x+2010}{7}+\frac{x+2010}{8}\\ \frac{x+2010}{5}+\frac{x+2010}{6}-\frac{x+2010}{7}-\frac{x+2010}{8}=0\\ \left(x+2010\right)\left(\frac{1}{5}+\frac{1}{6}-\frac{1}{7}-\frac{1}{8}\right)=0\\ \Rightarrow x+2010=0\\ \Rightarrow x=-2010\)

Vậy x = -2010

14 tháng 6 2016

Ta có:

\(\frac{-2015}{2016}=-1+\frac{1}{2016}\)

\(\frac{-2016}{2017}=-1+\frac{1}{2017}\)

Vì \(\frac{1}{2016}>\frac{1}{2017}\) nên \(-1+\frac{1}{2016}>-1+\frac{1}{2017}\)

\(\Rightarrow\frac{-2015}{2016}>\frac{-2016}{2017}\)

10 tháng 4 2018

\(\frac{B}{A}=\frac{\frac{2^{2017}-3}{2^{2016}-1}}{\frac{2^{2018}-3}{2^{2017}-1}}=\frac{2^{2017}-3}{2^{2016}-1}\cdot\frac{2^{2017}-1}{2^{2018}-3}\)

\(=\frac{2^{4034}-4.2^{2017}+3}{2^{4034}-3.2^{2016}-2^{2018}+3}\)

Ta có: 4.22017 = 22019 

3.22016 + 22018 < 4.22016 + 22018 = 2.22018 = 22019

=> 4.22017 > 3.22016 + 22018 

=>  - 4.22017 < - 3.22016 - 22018

\(\Rightarrow\frac{2^{4034}-4.2^{2017}+3}{2^{4034}-3.2^{2016}-2^{2018}+3}< 1\)

=> B < A