K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2016

Đặt A=\(\frac{10^{2006}+1}{10^{2007}+1}\);\(B=\frac{10^{2007}+1}{10^{2008}+1}\)

10A=\(\frac{10\left(10^{2006}+1\right)}{10^{2007}+1}\)=\(\frac{10^{2007}+1+9}{10^{2007}+1}\)

10B=\(\frac{10\left(10^{2007}+1\right)}{10^{2008}+1}=\frac{10^{2008}+1+9}{10^{2008}+1}\)

Vì \(\frac{9}{10^{2007}+1}>\frac{9}{10^{2008}+1}\)nên 10A>10B nên A>B

 

28 tháng 3 2016

\(10A=\frac{10^{2006}+10}{10^{2007}+1}\)

\(10B=\frac{10^{2007}+10}{10^{2008}+1}\)

\(10A=1\frac{9}{10^{2007}+1}\)

\(10B=1\frac{9}{10^{2008}+1}\)

Vì \(\frac{9}{10^{2007}+1}\) > \(\frac{9}{10^{2008}+1}\) ==> a > b

K NHA

7 tháng 8 2016

Ta có: A=\(\frac{10^{2006}+1}{10^{2007}+1}\)

=>10A=\(\frac{10\left(10^{2006}+1\right)}{10^{2007}+1}=\frac{10^{2007}+10}{10^{2007}+1}=1+\frac{9}{10^{2007}+1}\)             

Ta có: B=\(\frac{10^{2007}+1}{10^{2008}+1}\)

=>10B=\(\frac{10\left(10^{2007}+1\right)}{10^{2008}+1}=\frac{10^{2008}+10}{10^{2008}+1}=1+\frac{9}{10^{2008}+1}\)  

Mà \(\frac{9}{10^{2007}+1}>\frac{9}{10^{2008}+1}\)        (do 102007+1<102008+1)

=>\(1+\frac{9}{10^{2007}+1}>1+\frac{9}{10^{2008}+1}\)

=>10A>10B

=>A>B

7 tháng 8 2016

Áp dụng a/b < 1 => a/b < a+m/b+m (a,b,m thuộc N*)

=> \(B=\frac{10^{2007}+1}{10^{2008}+1}< \frac{10^{2007}+1+9}{10^{2008}+1+9}\)

=> \(B< \frac{10^{2007}+10}{10^{2008}+10}\)

=> \(B< \frac{10.\left(10^{2006}+1\right)}{10.\left(10^{2007}+1\right)}\)

=> \(B< \frac{10^{2006}+1}{10^{2007}+1}=A\)

a<b bn nha

19 tháng 1 2015

yêu cầu so sánh 2 phân số

 

1 tháng 4 2018

Đặt \(A=\frac{10^{2006}+9}{10^{2007}+9}\)

\(\Rightarrow10A=\frac{10^{2007}+90}{10^{2007}+9}=1+\frac{81}{10^{2007}+9}\)

\(\frac{10^{2007}+9}{10^{2008}+9}=B\)

\(\Rightarrow10B=\frac{10^{2008}+90}{10^{2008}+9}=1+\frac{81}{10^{2008}+9}\)

\(10A>10B\Rightarrow A>B\)

14 tháng 6 2016

A=\(\frac{10^{2006}+1}{10^{2007}+1}\)

10.A=\(\frac{10.\left(10^{2006}+10\right)}{10^{2007}+1}\)

=\(1+\frac{9}{10^{2007}+1}\)

B=\(\frac{10^{2007}+1}{10^{2008}+1}\)

\(10.B=\frac{10.\left(10^{2007}+10\right)}{10^{2008}+1}\)

\(1+\frac{9}{10^{2008}+1}\)

\(1+\frac{9}{10^{2007}+1}>1+\frac{9}{10^{2008}+1}\) nên 10A > 10B \(\Rightarrow A>B\)

k cko mk nka

7 tháng 4 2016

vì \(\frac{10^{2006}+1}{10^{2007}+1}\)<1

tc:B=\(\frac{10^{2006}+1}{10^{2007}+1}\)<\(\frac{10^{2006}+1+9}{10^{2007}+1+9}\)=\(\frac{10^{2006}+10}{10^{2007}+10}\)=\(\frac{10\left(10^{2005}+1\right)}{10\left(10^{2006}+1\right)}\)=\(\frac{10^{2005}+1}{10^{2006}+1}\)=A

=>B<A

7 tháng 4 2016

A<B

quy tắc:  a/b <1 thì a/b<a+m/b+m

a/b>1 thì a/b> a+m/b+m